(1) $\sin(\frac{7}{12}\pi)$ の値を加法定理を用いて求める。 (2) $\cos(\frac{3}{4}\pi)$ の値を求める。解析学三角関数加法定理三角関数の値2025/7/171. 問題の内容(1) sin(712π)\sin(\frac{7}{12}\pi)sin(127π) の値を加法定理を用いて求める。(2) cos(34π)\cos(\frac{3}{4}\pi)cos(43π) の値を求める。2. 解き方の手順(1)まず、712π\frac{7}{12}\pi127π を π4\frac{\pi}{4}4π と π3\frac{\pi}{3}3π の和で表す。712π=312π+412π=π4+π3\frac{7}{12}\pi = \frac{3}{12}\pi + \frac{4}{12}\pi = \frac{\pi}{4} + \frac{\pi}{3}127π=123π+124π=4π+3π次に、sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cos B + \cos A \sin Bsin(A+B)=sinAcosB+cosAsinB の加法定理を用いる。sin(712π)=sin(π4+π3)=sin(π4)cos(π3)+cos(π4)sin(π3)\sin(\frac{7}{12}\pi) = \sin(\frac{\pi}{4} + \frac{\pi}{3}) = \sin(\frac{\pi}{4})\cos(\frac{\pi}{3}) + \cos(\frac{\pi}{4})\sin(\frac{\pi}{3})sin(127π)=sin(4π+3π)=sin(4π)cos(3π)+cos(4π)sin(3π)sin(π4)=22\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}sin(4π)=22, cos(π3)=12\cos(\frac{\pi}{3}) = \frac{1}{2}cos(3π)=21, cos(π4)=22\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}cos(4π)=22, sin(π3)=32\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}sin(3π)=23 を代入する。sin(712π)=22⋅12+22⋅32=24+64=2+64\sin(\frac{7}{12}\pi) = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}sin(127π)=22⋅21+22⋅23=42+46=42+6(2)cos(34π)\cos(\frac{3}{4}\pi)cos(43π) を求める。cos(34π)=cos(π−π4)=−cos(π4)\cos(\frac{3}{4}\pi) = \cos(\pi - \frac{\pi}{4}) = -\cos(\frac{\pi}{4})cos(43π)=cos(π−4π)=−cos(4π)cos(π4)=22\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}cos(4π)=22 より、cos(34π)=−22\cos(\frac{3}{4}\pi) = -\frac{\sqrt{2}}{2}cos(43π)=−223. 最終的な答え(1) 2+64\frac{\sqrt{2} + \sqrt{6}}{4}42+6(2) −22-\frac{\sqrt{2}}{2}−22