サイコロを4回投げて、出た目を順にA, B, C, Dとします。A < B < C < Dとなるような場合の数を求めます。

確率論・統計学確率組み合わせサイコロ
2025/7/18

1. 問題の内容

サイコロを4回投げて、出た目を順にA, B, C, Dとします。A < B < C < Dとなるような場合の数を求めます。

2. 解き方の手順

この問題は、1から6までの6個の数字の中から、異なる4つの数字を選ぶ組み合わせの問題として考えることができます。選んだ4つの数字を小さい順にA, B, C, Dに割り当てれば、A < B < C < Dという条件を満たすことになります。
組み合わせの総数を求めるには、組み合わせの公式を使用します。n個の中からr個を選ぶ組み合わせの数は、次のように表されます。
nCr=n!r!(nr)!_nC_r = \frac{n!}{r!(n-r)!}
ここで、n! は n の階乗を表します(例:5! = 5 × 4 × 3 × 2 × 1)。
この問題では、n = 6 (サイコロの目の数) であり、r = 4 (選ぶ目の数) です。したがって、組み合わせの数は次のようになります。
6C4=6!4!(64)!=6!4!2!=6×5×4×3×2×1(4×3×2×1)(2×1)=6×52×1=15_6C_4 = \frac{6!}{4!(6-4)!} = \frac{6!}{4!2!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(4 \times 3 \times 2 \times 1)(2 \times 1)} = \frac{6 \times 5}{2 \times 1} = 15

3. 最終的な答え

A < B < C < D となるような場合の数は15通りです。

「確率論・統計学」の関連問題

サイコロを2回投げたとき、出た目の和が12になる確率を求めます。

確率サイコロ場合の数
2025/7/18

サイコロを2回投げたとき、2つの出た目の和が5の倍数になる確率を求める問題です。

確率サイコロ場合の数確率の計算
2025/7/18

1, 2, 3, 4 の4枚のカードから2枚を選んで2桁の整数を作るとき、作った整数が4の倍数になる確率を求める問題です。

確率場合の数整数倍数
2025/7/18

1, 2, 4, 5, 7の5枚のカードから2枚を選んで2桁の整数を作るとき、偶数ができる確率を求める問題です。

確率組み合わせ偶数場合の数
2025/7/18

4枚のカード(3, 5, 6, 9)から2枚を選んで2桁の整数を作るとき、作られた整数が5の倍数となる確率を求める問題です。

確率順列倍数場合の数
2025/7/18

4枚の硬貨を同時に投げるとき、すべての硬貨が表となる確率を求めよ。

確率コイン事象
2025/7/18

大小2つのサイコロを順に投げるとき、小さいサイコロの目が大きいサイコロの目よりも小さくなる確率を求めます。

確率サイコロ場合の数
2025/7/18

4枚のカード(2, 4, 5, 9)から1枚ずつ、計2枚引いて2桁の整数を作ります。ただし、引いたカードは毎回元に戻します。できた2桁の整数が偶数になる確率を求めます。

確率場合の数偶数組み合わせ
2025/7/18

7枚のカード(A~G)があり、A, B, Cは赤色、D, E, F, Gは白色です。この中から4枚のカードを取り出すとき、取り出した4枚のうち1枚だけが白色である確率を求めます。

確率組み合わせ二項係数
2025/7/18

4枚のカード(2, 3, 6, 8)から2枚のカードを続けて引く。1枚目のカードの数を2枚目のカードの数で割り切れる確率を求める。ただし、引いたカードは元に戻さない。

確率組み合わせ割り算
2025/7/18