1. 問題の内容
5人、4人、3人のグループがそれぞれある。各グループから2人ずつ選ぶとき、選び方は全部で何通りあるか。
2. 解き方の手順
各グループからの選び方を計算し、それらを掛け合わせることで、全体の選び方を求める。
* 5人のグループから2人を選ぶ組み合わせの数:
これは組み合わせの問題なので、組み合わせの公式 を使う。
5人から2人を選ぶ組み合わせは 通り。
* 4人のグループから2人を選ぶ組み合わせの数:
通り。
* 3人のグループから2人を選ぶ組み合わせの数:
通り。
全体の選び方は、各グループの選び方の積になるので、 を計算する。
3. 最終的な答え
通り。