与えられた関数 $f(x) = \sqrt[3]{\frac{(\log x)^2}{x}}$ の導関数を求めよ。解析学微分導関数対数微分法関数の微分2025/7/201. 問題の内容与えられた関数 f(x)=(logx)2x3f(x) = \sqrt[3]{\frac{(\log x)^2}{x}}f(x)=3x(logx)2 の導関数を求めよ。2. 解き方の手順まず、関数を整理します。f(x)=((logx)2x)13f(x) = \left( \frac{(\log x)^2}{x} \right)^{\frac{1}{3}}f(x)=(x(logx)2)31対数微分法を用いるために、両辺の自然対数を取ります。logf(x)=13log((logx)2x)\log f(x) = \frac{1}{3} \log \left( \frac{(\log x)^2}{x} \right)logf(x)=31log(x(logx)2)logf(x)=13(log((logx)2)−logx)\log f(x) = \frac{1}{3} \left( \log ((\log x)^2) - \log x \right)logf(x)=31(log((logx)2)−logx)logf(x)=13(2log(logx)−logx)\log f(x) = \frac{1}{3} \left( 2 \log (\log x) - \log x \right)logf(x)=31(2log(logx)−logx)両辺を xxx で微分します。f′(x)f(x)=13(2⋅1logx⋅1x−1x)\frac{f'(x)}{f(x)} = \frac{1}{3} \left( 2 \cdot \frac{1}{\log x} \cdot \frac{1}{x} - \frac{1}{x} \right)f(x)f′(x)=31(2⋅logx1⋅x1−x1)f′(x)f(x)=13x(2logx−1)\frac{f'(x)}{f(x)} = \frac{1}{3x} \left( \frac{2}{\log x} - 1 \right)f(x)f′(x)=3x1(logx2−1)f′(x)f(x)=13x(2−logxlogx)\frac{f'(x)}{f(x)} = \frac{1}{3x} \left( \frac{2 - \log x}{\log x} \right)f(x)f′(x)=3x1(logx2−logx)f′(x)=f(x)⋅2−logx3xlogxf'(x) = f(x) \cdot \frac{2 - \log x}{3x \log x}f′(x)=f(x)⋅3xlogx2−logxf′(x)=((logx)2x)13⋅2−logx3xlogxf'(x) = \left( \frac{(\log x)^2}{x} \right)^{\frac{1}{3}} \cdot \frac{2 - \log x}{3x \log x}f′(x)=(x(logx)2)31⋅3xlogx2−logxf′(x)=(logx)23x13⋅2−logx3xlogxf'(x) = \frac{(\log x)^{\frac{2}{3}}}{x^{\frac{1}{3}}} \cdot \frac{2 - \log x}{3x \log x}f′(x)=x31(logx)32⋅3xlogx2−logxf′(x)=2−logx3x43(logx)13f'(x) = \frac{2 - \log x}{3x^{\frac{4}{3}} (\log x)^{\frac{1}{3}}}f′(x)=3x34(logx)312−logx3. 最終的な答えf′(x)=2−logx3x43(logx)13f'(x) = \frac{2 - \log x}{3x^{\frac{4}{3}} (\log x)^{\frac{1}{3}}}f′(x)=3x34(logx)312−logx