$n$ は整数とする。命題「$n^2$ が偶数ならば、$n$ は偶数である」を証明する。

数論命題証明対偶整数の性質偶数奇数
2025/7/21

1. 問題の内容

nn は整数とする。命題「n2n^2 が偶数ならば、nn は偶数である」を証明する。

2. 解き方の手順

この命題を直接証明するのは難しいので、対偶を証明する。
元の命題の対偶は、「nn が奇数ならば、n2n^2 は奇数である」となる。
nn が奇数であると仮定すると、nn はある整数 kk を用いて、n=2k+1n = 2k+1 と表せる。
このとき、n2n^2
n2=(2k+1)2=4k2+4k+1=2(2k2+2k)+1n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1
と表せる。
2k2+2k2k^2 + 2k は整数なので、n2n^2 は奇数である。
したがって、nn が奇数ならば、n2n^2 は奇数であることが示された。
これは元の命題の対偶が真であることを意味する。
対偶が真なので、元の命題「n2n^2 が偶数ならば、nn は偶数である」も真である。

3. 最終的な答え

n2n^2 が偶数ならば、nn は偶数である。

「数論」の関連問題

与えられた選択肢の中から、正しい記述をすべて選択する問題です。選択肢は、無理数と有理数の和または積が、常に無理数または有理数になるかどうかを述べています。

無理数有理数数の性質証明
2025/7/21

与えられた選択肢の中から、正しいものを全て選ぶ問題です。選択肢は以下の通りです。 (1) 無理数と無理数の差は常に無理数である。 (2) 有理数と有理数の差は常に有理数である。 (3) 無理数と無理数...

有理数無理数数の性質代数
2025/7/21

この問題は、整数に関する記述の空欄を埋める問題です。 (1) 正の整数に0が含まれるかどうか。 (2) 2つの整数に対する演算の結果が常に整数になるものは何か。 (3) 2つの整数に対する演算の結果が...

整数演算四則演算整数の性質
2025/7/21

与えられた連立合同式 $x \equiv 30 \pmod{113}$ $x \equiv 20 \pmod{41}$ を満たす整数 $x$ を求め、その解を $x = a + bn$ の形で表す問題...

合同式連立合同式中国剰余定理拡張ユークリッドの互除法
2025/7/21

拡張ユークリッドの互除法を用いて、$113s + 41t = \gcd(113, 41)$ を満たす整数の組 $s, t$ を求める問題です。

ユークリッドの互除法拡張ユークリッドの互除法最大公約数整数
2025/7/21

$n$ は整数とする。命題「$n^2$ が3の倍数ならば、$n$ は3の倍数である」を証明する。

整数の性質倍数対偶証明
2025/7/21

自然数 $a$ と $b$ が互いに素であるとき、$a+2b$ と $3a+5b$ も互いに素であることを背理法を用いて証明する。

互いに素最大公約数背理法証明
2025/7/21

自然数 $a, b$ が互いに素であるとき、$a+b$ と $ab$ も互いに素であることを示す必要がある。

互いに素合同式素数整数の性質証明
2025/7/21

この問題は、整数に関するいくつかの計算問題です。具体的には、素因数分解、最大公約数、互除法、剰余、n進数などの概念を扱っています。

整数素因数分解最大公約数最小公倍数互除法剰余n進法
2025/7/21

$\sqrt[3]{882m}$ が整数となるような最小の自然数 $m$ を求め、そのときの $\sqrt[3]{882m}$ の正の約数の個数を求める問題です。

立方根素因数分解約数整数の性質
2025/7/21