与えられた方程式 $ax = -x^2 + x$ を解きます。

代数学方程式二次方程式因数分解解の公式
2025/7/21

1. 問題の内容

与えられた方程式 ax=x2+xax = -x^2 + x を解きます。

2. 解き方の手順

まず、すべてを右辺に移動して整理します。
0=x2+xax0 = -x^2 + x - ax
0=x2+(1a)x0 = -x^2 + (1-a)x
次に、x-xで両辺をくくります。
0=x(x(1a))0 = -x(x - (1-a))
0=x(x1+a)0 = -x(x - 1 + a)
したがって、x=0x = 0 または x1+a=0x - 1 + a = 0 となります。
x1+a=0x - 1 + a = 0 を解くと、x=1ax = 1 - a となります。

3. 最終的な答え

x=0,1ax=0, 1-a

「代数学」の関連問題

与えられた4つの2次関数について、最大値または最小値を求める問題です。

二次関数最大値最小値平方完成関数のグラフ
2025/7/21

与えられた式 $(a+b+c)(ab+bc+ca)-abc$ を展開し、簡略化せよ。

展開因数分解多項式
2025/7/21

$n$変数の多項式 $f(x_1, ..., x_n)$ と置換 $\sigma \in S_n$ に対して、$\sigma f(x_1, ..., x_n) = f(x_{\sigma(1)}, ....

置換多項式対称性群論
2025/7/21

与えられた式 $2x^2 + 8ax + 6a^2 -x + a - 1$ を因数分解せよ。

因数分解二次式多項式
2025/7/21

自然数 $n$ に対して、与えられた2つの2x2行列 $A$ の $n$ 乗 $A^n$ を求める問題です。 (1) $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{...

行列固有値固有ベクトル行列のべき乗
2025/7/21

与えられた式 $x^2 + 2xy - 3y^2 - 5x + y + 4$ を因数分解せよ。

因数分解多項式二次式
2025/7/21

与えられた2つの2次関数について、最大値または最小値を求める問題です。 (1) $y = 2(x+2)^2 - 1$ (2) $y = -(x-2)^2 + 5$

二次関数最大値最小値平方完成グラフ
2025/7/21

与えられた5つの二次方程式を解きます。5番目の問題については、実数解が存在しない場合は「なし」と答えます。

二次方程式因数分解解の公式実数解
2025/7/21

与えられた二次関数を $y = (x-p)^2 + q$ の形に変形する(平方完成する)問題です。対象となる二次関数は以下の4つです。 (1) $y = x^2 - 2x$ (2) $y = x^2 ...

二次関数平方完成
2025/7/21

与えられた2つの2次関数 $y=(x+1)^2$ と $y=-(x+1)^2$ について、それぞれのグラフを描く問題です。座標平面が与えられています。

二次関数グラフ放物線平行移動対称移動
2025/7/21