正方形があり、その縦の長さを2cm短くし、横の長さを3cm長くした長方形を作ったところ、面積が24cm$^2$になった。元の正方形の1辺の長さを求める。

代数学二次方程式面積方程式
2025/7/22

1. 問題の内容

正方形があり、その縦の長さを2cm短くし、横の長さを3cm長くした長方形を作ったところ、面積が24cm2^2になった。元の正方形の1辺の長さを求める。

2. 解き方の手順

元の正方形の1辺の長さをxx cmとする。
長方形の縦の長さは(x2)(x-2) cm、横の長さは(x+3)(x+3) cmと表せる。
長方形の面積は24 cm2^2であるから、次の方程式が成り立つ。
(x2)(x+3)=24(x-2)(x+3) = 24
この方程式を解く。
x2+3x2x6=24x^2 + 3x - 2x - 6 = 24
x2+x6=24x^2 + x - 6 = 24
x2+x30=0x^2 + x - 30 = 0
(x+6)(x5)=0(x+6)(x-5) = 0
よって、x=6x = -6またはx=5x = 5となる。
x>0x>0でなければならないので、x=5x=5が解となる。

3. 最終的な答え

5

「代数学」の関連問題

行列 $A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 5 & 3 \\ 0 & -6 & -4 \end{bmatrix}$ の固有値が2と-1であることを示し、$\til...

線形代数固有値固有空間行列
2025/7/22

与えられた4つの行列 $A$ に対して、それぞれのジョルダン標準形を求める問題です。

行列固有値固有ベクトルジョルダン標準形
2025/7/22

与えられた行列Aの最小多項式を求めます。問題は2つあります。 (1) $A = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 ...

線形代数行列固有値最小多項式
2025/7/22

線形写像 $f = L_A : \mathbb{R}^4 \to \mathbb{R}^5$ を $f(\mathbf{v}) = A\mathbf{v}$ で定義する。ここで、$A = \begin...

線形代数線形写像Im fKer f基底行列
2025/7/22

線形写像 $f: \mathbb{R}^4 \rightarrow \mathbb{R}^5$ が $f(v) = Av$ で定義される。ここで、行列 $A$ は $$ A = \begin{bmat...

線形代数線形写像基底行列
2025/7/22

(i) $R^3$ の部分集合 $\left\{ \begin{bmatrix} x+y \\ x^2 \\ 2z+3y \end{bmatrix} | x, y, z \in R \right\}$...

線形代数部分空間ベクトル空間
2025/7/22

与えられた6x6行列 $M$ の行列式 $det(M)$ を求める問題です。 $M = \begin{bmatrix} 1 & 1 & -2 & -2 & 1 & -1 \\ 1 & 2 & -1 &...

行列式線形代数行列の計算行基本変形
2025/7/22

$t>4$ を満たすすべての $t$ について、不等式 $(\log_2 t)^2 - b\log_2 t + 2 > 0$ が成り立つような $b$ の範囲を求める。

不等式対数二次関数判別式グラフ
2025/7/22

$t > 4$ を満たすすべての $t$ について、不等式 $(\log_2 t)^2 - b \log_2 t + 2 > 0$ が成り立つような $b$ の範囲を求める。

不等式二次関数対数
2025/7/22

2つの直線 $(a-1)x - 4y + 2 = 0$ と $x + (a-5)y + 3 = 0$ が、ある $a$ の値のときに垂直に交わり、また別の $a$ の値のときに平行となる。それぞれの ...

直線傾き垂直条件平行条件二次方程式
2025/7/22