$\sum_{k=1}^{n} (k+1)(k+2)$ を求めよ。代数学数列シグマ計算2025/7/221. 問題の内容∑k=1n(k+1)(k+2)\sum_{k=1}^{n} (k+1)(k+2)∑k=1n(k+1)(k+2) を求めよ。2. 解き方の手順まず、(k+1)(k+2)(k+1)(k+2)(k+1)(k+2) を展開します。(k+1)(k+2)=k2+3k+2(k+1)(k+2) = k^2 + 3k + 2(k+1)(k+2)=k2+3k+2次に、シグマの性質を利用して、それぞれの項に分解します。∑k=1n(k2+3k+2)=∑k=1nk2+3∑k=1nk+∑k=1n2\sum_{k=1}^{n} (k^2 + 3k + 2) = \sum_{k=1}^{n} k^2 + 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 2∑k=1n(k2+3k+2)=∑k=1nk2+3∑k=1nk+∑k=1n2ここで、以下の公式を使います。∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nc=nc\sum_{k=1}^{n} c = nc∑k=1nc=nc (cは定数)これらの公式を適用すると、∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)3∑k=1nk=3n(n+1)2=3n(n+1)23\sum_{k=1}^{n} k = 3\frac{n(n+1)}{2} = \frac{3n(n+1)}{2}3∑k=1nk=32n(n+1)=23n(n+1)∑k=1n2=2n\sum_{k=1}^{n} 2 = 2n∑k=1n2=2nしたがって、∑k=1n(k+1)(k+2)=n(n+1)(2n+1)6+3n(n+1)2+2n\sum_{k=1}^{n} (k+1)(k+2) = \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{2} + 2n∑k=1n(k+1)(k+2)=6n(n+1)(2n+1)+23n(n+1)+2n通分して整理します。n(n+1)(2n+1)6+9n(n+1)6+12n6=n(n+1)(2n+1)+9n(n+1)+12n6\frac{n(n+1)(2n+1)}{6} + \frac{9n(n+1)}{6} + \frac{12n}{6} = \frac{n(n+1)(2n+1) + 9n(n+1) + 12n}{6}6n(n+1)(2n+1)+69n(n+1)+612n=6n(n+1)(2n+1)+9n(n+1)+12n=n[(n+1)(2n+1)+9(n+1)+12]6=n[2n2+3n+1+9n+9+12]6=n[2n2+12n+22]6=2n[n2+6n+11]6=n(n2+6n+11)3= \frac{n[(n+1)(2n+1) + 9(n+1) + 12]}{6} = \frac{n[2n^2 + 3n + 1 + 9n + 9 + 12]}{6} = \frac{n[2n^2 + 12n + 22]}{6} = \frac{2n[n^2 + 6n + 11]}{6} = \frac{n(n^2 + 6n + 11)}{3}=6n[(n+1)(2n+1)+9(n+1)+12]=6n[2n2+3n+1+9n+9+12]=6n[2n2+12n+22]=62n[n2+6n+11]=3n(n2+6n+11)3. 最終的な答えn(n2+6n+11)3\frac{n(n^2+6n+11)}{3}3n(n2+6n+11)