定積分 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^4 x \, dx$ の値を求めよ。解析学定積分三角関数偶関数積分計算2025/7/221. 問題の内容定積分 ∫−π4π4tan4x dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^4 x \, dx∫−4π4πtan4xdx の値を求めよ。2. 解き方の手順tan4x\tan^4 xtan4x は偶関数なので、積分範囲が −π4-\frac{\pi}{4}−4π から π4\frac{\pi}{4}4π であることを利用して、次のように変形できます。∫−π4π4tan4x dx=2∫0π4tan4x dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^4 x \, dx = 2 \int_{0}^{\frac{\pi}{4}} \tan^4 x \, dx∫−4π4πtan4xdx=2∫04πtan4xdxここで、tan4x=tan2x⋅tan2x\tan^4 x = \tan^2 x \cdot \tan^2 xtan4x=tan2x⋅tan2x であることと、tan2x=1cos2x−1\tan^2 x = \frac{1}{\cos^2 x} - 1tan2x=cos2x1−1 を利用して、積分を計算しやすい形に変形します。まず、tan2x=1cos2x−1\tan^2 x = \frac{1}{\cos^2 x} - 1tan2x=cos2x1−1をtan4x=tan2x⋅tan2x\tan^4 x = \tan^2 x \cdot \tan^2 xtan4x=tan2x⋅tan2xに代入すると、tan4x=tan2x(1cos2x−1)\tan^4 x = \tan^2 x(\frac{1}{\cos^2 x} - 1)tan4x=tan2x(cos2x1−1)=tan2x⋅1cos2x−tan2x= \tan^2 x \cdot \frac{1}{\cos^2 x} - \tan^2 x=tan2x⋅cos2x1−tan2x=tan2x⋅1cos2x−(1cos2x−1)= \tan^2 x \cdot \frac{1}{\cos^2 x} - (\frac{1}{\cos^2 x} - 1)=tan2x⋅cos2x1−(cos2x1−1)=tan2x⋅1cos2x−1cos2x+1= \tan^2 x \cdot \frac{1}{\cos^2 x} - \frac{1}{\cos^2 x} + 1=tan2x⋅cos2x1−cos2x1+1よって∫0π4tan4x dx=∫0π4(tan2x⋅1cos2x−1cos2x+1) dx\int_{0}^{\frac{\pi}{4}} \tan^4 x \, dx = \int_{0}^{\frac{\pi}{4}} (\tan^2 x \cdot \frac{1}{\cos^2 x} - \frac{1}{\cos^2 x} + 1) \, dx∫04πtan4xdx=∫04π(tan2x⋅cos2x1−cos2x1+1)dx=∫0π4tan2x⋅1cos2x dx−∫0π41cos2x dx+∫0π41 dx= \int_{0}^{\frac{\pi}{4}} \tan^2 x \cdot \frac{1}{\cos^2 x} \, dx - \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \, dx + \int_{0}^{\frac{\pi}{4}} 1 \, dx=∫04πtan2x⋅cos2x1dx−∫04πcos2x1dx+∫04π1dxここで、ddxtanx=1cos2x\frac{d}{dx} \tan x = \frac{1}{\cos^2 x}dxdtanx=cos2x1 より∫0π4tan2x⋅1cos2x dx=∫0π4tan2x⋅(tanx)′ dx=[tan3x3]0π4=13\int_{0}^{\frac{\pi}{4}} \tan^2 x \cdot \frac{1}{\cos^2 x} \, dx = \int_{0}^{\frac{\pi}{4}} \tan^2 x \cdot (\tan x)' \, dx = \left[ \frac{\tan^3 x}{3} \right]_0^{\frac{\pi}{4}} = \frac{1}{3}∫04πtan2x⋅cos2x1dx=∫04πtan2x⋅(tanx)′dx=[3tan3x]04π=31また、∫0π41cos2x dx=[tanx]0π4=1\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \, dx = [\tan x]_0^{\frac{\pi}{4}} = 1∫04πcos2x1dx=[tanx]04π=1∫0π41 dx=[x]0π4=π4\int_{0}^{\frac{\pi}{4}} 1 \, dx = [x]_0^{\frac{\pi}{4}} = \frac{\pi}{4}∫04π1dx=[x]04π=4πしたがって∫0π4tan4x dx=13−1+π4=π4−23\int_{0}^{\frac{\pi}{4}} \tan^4 x \, dx = \frac{1}{3} - 1 + \frac{\pi}{4} = \frac{\pi}{4} - \frac{2}{3}∫04πtan4xdx=31−1+4π=4π−32よって2∫0π4tan4x dx=2(π4−23)=π2−432 \int_{0}^{\frac{\pi}{4}} \tan^4 x \, dx = 2 (\frac{\pi}{4} - \frac{2}{3}) = \frac{\pi}{2} - \frac{4}{3}2∫04πtan4xdx=2(4π−32)=2π−343. 最終的な答えπ2−43\frac{\pi}{2} - \frac{4}{3}2π−34