$\int \frac{1}{x} \sqrt{\frac{x-1}{x+1}} dx$ を計算せよ。解析学積分置換積分部分分数分解不定積分2025/7/23はい、承知いたしました。問題の2番を解きます。1. 問題の内容∫1xx−1x+1dx\int \frac{1}{x} \sqrt{\frac{x-1}{x+1}} dx∫x1x+1x−1dx を計算せよ。2. 解き方の手順まず、t=x−1x+1t = \sqrt{\frac{x-1}{x+1}}t=x+1x−1 と置換します。すると、t2=x−1x+1t^2 = \frac{x-1}{x+1}t2=x+1x−1 となり、xxx について解くと、x=1+t21−t2x = \frac{1+t^2}{1-t^2}x=1−t21+t2次に、dxdxdx を dtdtdt で表します。dxdt=(1−t2)(2t)−(1+t2)(−2t)(1−t2)2=2t−2t3+2t+2t3(1−t2)2=4t(1−t2)2\frac{dx}{dt} = \frac{(1-t^2)(2t) - (1+t^2)(-2t)}{(1-t^2)^2} = \frac{2t - 2t^3 + 2t + 2t^3}{(1-t^2)^2} = \frac{4t}{(1-t^2)^2}dtdx=(1−t2)2(1−t2)(2t)−(1+t2)(−2t)=(1−t2)22t−2t3+2t+2t3=(1−t2)24tよって、dx=4t(1−t2)2dtdx = \frac{4t}{(1-t^2)^2} dtdx=(1−t2)24tdtしたがって、積分は∫1xx−1x+1dx=∫1−t21+t2t4t(1−t2)2dt=∫4t2(1+t2)(1−t2)dt=∫4t21−t4dt\int \frac{1}{x} \sqrt{\frac{x-1}{x+1}} dx = \int \frac{1-t^2}{1+t^2} t \frac{4t}{(1-t^2)^2} dt = \int \frac{4t^2}{(1+t^2)(1-t^2)} dt = \int \frac{4t^2}{1-t^4} dt∫x1x+1x−1dx=∫1+t21−t2t(1−t2)24tdt=∫(1+t2)(1−t2)4t2dt=∫1−t44t2dtここで、4t21−t4=A1−t+B1+t+C1−t2+D1+t2\frac{4t^2}{1-t^4} = \frac{A}{1-t} + \frac{B}{1+t} + \frac{C}{1-t^2} + \frac{D}{1+t^2}1−t44t2=1−tA+1+tB+1−t2C+1+t2D と部分分数分解します。計算を避けて、式変形を行います。4t21−t4=21−t2−21+t2\frac{4t^2}{1-t^4} = \frac{2}{1-t^2} - \frac{2}{1+t^2}1−t44t2=1−t22−1+t22よって積分は∫21−t2−21+t2dt=∫11+t+11−t−21+t2dt=log∣1+t∣−log∣1−t∣−2arctant+C=log∣1+t1−t∣−2arctant+C\int \frac{2}{1-t^2} - \frac{2}{1+t^2} dt = \int \frac{1}{1+t} + \frac{1}{1-t} - \frac{2}{1+t^2} dt = \log|1+t| - \log|1-t| - 2\arctan t + C = \log|\frac{1+t}{1-t}| - 2\arctan t + C∫1−t22−1+t22dt=∫1+t1+1−t1−1+t22dt=log∣1+t∣−log∣1−t∣−2arctant+C=log∣1−t1+t∣−2arctant+Cttt を元に戻すと、log∣1+x−1x+11−x−1x+1∣−2arctanx−1x+1+C\log|\frac{1+\sqrt{\frac{x-1}{x+1}}}{1-\sqrt{\frac{x-1}{x+1}}}| - 2\arctan \sqrt{\frac{x-1}{x+1}} + Clog∣1−x+1x−11+x+1x−1∣−2arctanx+1x−1+C整理すると、log∣x+1+x−1x+1−x−1∣−2arctanx−1x+1+C\log|\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}| - 2\arctan \sqrt{\frac{x-1}{x+1}} + Clog∣x+1−x−1x+1+x−1∣−2arctanx+1x−1+Clog∣(x+1+x−1)22∣−2arctanx−1x+1+C\log|\frac{(\sqrt{x+1}+\sqrt{x-1})^2}{2}| - 2\arctan \sqrt{\frac{x-1}{x+1}} + Clog∣2(x+1+x−1)2∣−2arctanx+1x−1+Clog∣x+1+2x2−1+x−12∣−2arctanx−1x+1+C\log|\frac{x+1+2\sqrt{x^2-1}+x-1}{2}| - 2\arctan \sqrt{\frac{x-1}{x+1}} + Clog∣2x+1+2x2−1+x−1∣−2arctanx+1x−1+Clog∣x+x2−1∣−2arctanx−1x+1+C′\log|x+\sqrt{x^2-1}| - 2\arctan \sqrt{\frac{x-1}{x+1}} + C'log∣x+x2−1∣−2arctanx+1x−1+C′3. 最終的な答えlog∣x+x2−1∣−2arctanx−1x+1+C\log|x+\sqrt{x^2-1}| - 2\arctan \sqrt{\frac{x-1}{x+1}} + Clog∣x+x2−1∣−2arctanx+1x−1+Cまたは log∣1+x−1x+11−x−1x+1∣−2arctanx−1x+1+C\log|\frac{1+\sqrt{\frac{x-1}{x+1}}}{1-\sqrt{\frac{x-1}{x+1}}}| - 2\arctan \sqrt{\frac{x-1}{x+1}} + Clog∣1−x+1x−11+x+1x−1∣−2arctanx+1x−1+C