三角形ABCにおいて、$a=4$, $b=\sqrt{7}$, $c=\sqrt{3}$のとき、角Bの大きさを求めよ。

幾何学三角形余弦定理角度
2025/7/23

1. 問題の内容

三角形ABCにおいて、a=4a=4, b=7b=\sqrt{7}, c=3c=\sqrt{3}のとき、角Bの大きさを求めよ。

2. 解き方の手順

余弦定理を用いて、角Bの余弦を求めます。余弦定理より、
b2=a2+c22accosBb^2 = a^2 + c^2 - 2ac\cos{B}
cosB=a2+c2b22ac\cos{B} = \frac{a^2 + c^2 - b^2}{2ac}
与えられた値を代入すると、
cosB=42+(3)2(7)2243=16+3783=1283=323=3323=32\cos{B} = \frac{4^2 + (\sqrt{3})^2 - (\sqrt{7})^2}{2 \cdot 4 \cdot \sqrt{3}} = \frac{16 + 3 - 7}{8\sqrt{3}} = \frac{12}{8\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{3\sqrt{3}}{2 \cdot 3} = \frac{\sqrt{3}}{2}
cosB=32\cos{B} = \frac{\sqrt{3}}{2}となる角Bは、B=30B = 30^\circです。

3. 最終的な答え

B=30B = 30^\circ

「幾何学」の関連問題

空間内に点O(0,0,0), A(1,-1,2), B(1,1,2), C(-1,2,0)がある。点Oから3点A, B, Cを含む平面に下ろした垂線の足Hの座標を求める。

空間ベクトル平面の方程式法線ベクトル垂線ベクトルの外積
2025/7/26

与えられた極方程式 $r = 6\cos\theta$ のグラフを描く問題です。また、与えられた極方程式 $r = \theta$ のグラフを、$0 \leq \theta \leq 4\pi$ の範...

極方程式グラフアルキメデスの螺旋
2025/7/26

三角形ABCにおいて、AB = $\sqrt{6}$, ∠BAC = 75°, ∠ABC = 45°である。点Aから直線BCに下ろした垂線の足をHとする。三角形ACHの外接円と直線ABの交点のうち、A...

三角形正弦定理垂線角度方べきの定理
2025/7/26

三角形ABCにおいて、$AB = \sqrt{6}$、$\angle BAC = 75^\circ$、$\angle ABC = 45^\circ$である。点Aから直線BCに垂直な直線と直線BCとの交...

三角形角度外接円三角比
2025/7/26

ベクトル $\mathbf{a} = (3, -4)$ に垂直な単位ベクトル $\mathbf{v}$ を求める問題です。

ベクトル垂直単位ベクトルベクトルの演算
2025/7/26

半径2の円O上に、$AB = 1$を満たす2点A, Bをとる。点Aにおける円Oの接線を$l$とする。点Bを通り$l$に垂直な直線と$l$との交点をHとするとき、$AH$の長さを求める。

接線三平方の定理三角比
2025/7/26

半径2の円O上に、AB=1を満たす2点A, Bをとる。点Aにおいて円Oと接する直線をlとする。点Bを通りlに垂直な直線とlとの交点をHとするとき、AHの長さを求める問題。選択肢は、ア. 1/4, イ....

接線三角比余弦定理角度
2025/7/26

問題文は、アからウの図形(ア:正三角形、イ:平行四辺形、ウ:正方形)について、以下の2つの問いに答えるものです。 (1) 線対称な図形を全て選び、記号で答える。 (2) 点対称な図形を全て選び、記号で...

図形線対称点対称正三角形平行四辺形正方形
2025/7/26

立方体の展開図が与えられており、以下の2つの質問に答える必要があります。 (1) 面「お」と垂直になる面を全て答える。 (2) 点Aと重なる点を全て答える。

立方体展開図空間図形垂直
2025/7/26

平行線 $l$ と $m$ があり、角度が与えられた図において、$x$ の角度を求める問題です。三角形は二等辺三角形です。

角度平行線三角形二等辺三角形角度の計算
2025/7/26