領域$D = \{(x, y) | x^2 + y^2 \leq 1, y \geq x, y \leq -x\}$ 上で、二重積分 $\iint_D x^2 y^2 \, dx \, dy$ を計算します。
2025/7/23
1. 問題の内容
領域 上で、二重積分 を計算します。
2. 解き方の手順
領域は、(半径1の円盤)と、 および (直線との間)で定義されます。この領域は第2象限の扇形です。
極座標変換 , を用います。
領域 は、極座標で および と表されます。
ヤコビアンは です。
よって、積分は次のようになります。
まず で積分します。
次に で積分します。
したがって、