関数 $F(x) = \int_{\frac{\pi}{3}}^{x} (x - 3t) \cos{t} \, dt$ を微分せよ。解析学積分微分部分積分定積分関数2025/7/231. 問題の内容関数 F(x)=∫π3x(x−3t)cost dtF(x) = \int_{\frac{\pi}{3}}^{x} (x - 3t) \cos{t} \, dtF(x)=∫3πx(x−3t)costdt を微分せよ。2. 解き方の手順まず、F(x)F(x)F(x) を積分記号の中から xxx を分離して書き換えます。F(x)=∫π3x(x−3t)cost dt=x∫π3xcost dt−3∫π3xtcost dtF(x) = \int_{\frac{\pi}{3}}^{x} (x - 3t) \cos{t} \, dt = x \int_{\frac{\pi}{3}}^{x} \cos{t} \, dt - 3 \int_{\frac{\pi}{3}}^{x} t \cos{t} \, dtF(x)=∫3πx(x−3t)costdt=x∫3πxcostdt−3∫3πxtcostdt次に、各積分を計算します。∫π3xcost dt=[sint]π3x=sinx−sinπ3=sinx−32\int_{\frac{\pi}{3}}^{x} \cos{t} \, dt = [\sin{t}]_{\frac{\pi}{3}}^{x} = \sin{x} - \sin{\frac{\pi}{3}} = \sin{x} - \frac{\sqrt{3}}{2}∫3πxcostdt=[sint]3πx=sinx−sin3π=sinx−23∫π3xtcost dt\int_{\frac{\pi}{3}}^{x} t \cos{t} \, dt∫3πxtcostdt は部分積分を用いて計算します。u=tu = tu=t, dv=cost dtdv = \cos{t} \, dtdv=costdt とすると、du=dtdu = dtdu=dt, v=sintv = \sin{t}v=sint となります。∫π3xtcost dt=[tsint]π3x−∫π3xsint dt=xsinx−π3sinπ3−[−cost]π3x=xsinx−π332+cosx−cosπ3=xsinx−π36+cosx−12\int_{\frac{\pi}{3}}^{x} t \cos{t} \, dt = [t \sin{t}]_{\frac{\pi}{3}}^{x} - \int_{\frac{\pi}{3}}^{x} \sin{t} \, dt = x \sin{x} - \frac{\pi}{3} \sin{\frac{\pi}{3}} - [-\cos{t}]_{\frac{\pi}{3}}^{x} = x \sin{x} - \frac{\pi}{3} \frac{\sqrt{3}}{2} + \cos{x} - \cos{\frac{\pi}{3}} = x \sin{x} - \frac{\pi \sqrt{3}}{6} + \cos{x} - \frac{1}{2}∫3πxtcostdt=[tsint]3πx−∫3πxsintdt=xsinx−3πsin3π−[−cost]3πx=xsinx−3π23+cosx−cos3π=xsinx−6π3+cosx−21したがって、F(x)=x(sinx−32)−3(xsinx−π36+cosx−12)=xsinx−32x−3xsinx+π32−3cosx+32=−2xsinx−32x+π32−3cosx+32F(x) = x (\sin{x} - \frac{\sqrt{3}}{2}) - 3 (x \sin{x} - \frac{\pi \sqrt{3}}{6} + \cos{x} - \frac{1}{2}) = x \sin{x} - \frac{\sqrt{3}}{2} x - 3x \sin{x} + \frac{\pi \sqrt{3}}{2} - 3 \cos{x} + \frac{3}{2} = -2x \sin{x} - \frac{\sqrt{3}}{2} x + \frac{\pi \sqrt{3}}{2} - 3 \cos{x} + \frac{3}{2}F(x)=x(sinx−23)−3(xsinx−6π3+cosx−21)=xsinx−23x−3xsinx+2π3−3cosx+23=−2xsinx−23x+2π3−3cosx+23F(x)F(x)F(x) を xxx で微分します。F′(x)=ddx(−2xsinx−32x+π32−3cosx+32)F'(x) = \frac{d}{dx} (-2x \sin{x} - \frac{\sqrt{3}}{2} x + \frac{\pi \sqrt{3}}{2} - 3 \cos{x} + \frac{3}{2})F′(x)=dxd(−2xsinx−23x+2π3−3cosx+23)=−2(sinx+xcosx)−32+3sinx=−2sinx−2xcosx−32+3sinx=sinx−2xcosx−32= -2 (\sin{x} + x \cos{x}) - \frac{\sqrt{3}}{2} + 3 \sin{x} = -2 \sin{x} - 2x \cos{x} - \frac{\sqrt{3}}{2} + 3 \sin{x} = \sin{x} - 2x \cos{x} - \frac{\sqrt{3}}{2}=−2(sinx+xcosx)−23+3sinx=−2sinx−2xcosx−23+3sinx=sinx−2xcosx−233. 最終的な答えF′(x)=sinx−2xcosx−32F'(x) = \sin{x} - 2x \cos{x} - \frac{\sqrt{3}}{2}F′(x)=sinx−2xcosx−23