次の定積分を計算します。ただし、$ab \neq 0$とします。 $\qquad \int_{0}^{\frac{\pi}{4}} \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x}$解析学定積分積分計算置換積分三角関数2025/7/231. 問題の内容次の定積分を計算します。ただし、ab≠0ab \neq 0ab=0とします。∫0π4dxa2sin2x+b2cos2x\qquad \int_{0}^{\frac{\pi}{4}} \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x}∫04πa2sin2x+b2cos2xdx2. 解き方の手順まず、分子と分母をcos2x\cos^2 xcos2xで割ります。∫0π4dxa2sin2x+b2cos2x=∫0π41cos2xa2sin2xcos2x+b2cos2xcos2xdx\qquad \int_{0}^{\frac{\pi}{4}} \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x} = \int_{0}^{\frac{\pi}{4}} \frac{\frac{1}{\cos^2 x}}{\frac{a^2 \sin^2 x}{\cos^2 x} + \frac{b^2 \cos^2 x}{\cos^2 x}} dx∫04πa2sin2x+b2cos2xdx=∫04πcos2xa2sin2x+cos2xb2cos2xcos2x1dx=∫0π41cos2xa2tan2x+b2dx\qquad = \int_{0}^{\frac{\pi}{4}} \frac{\frac{1}{\cos^2 x}}{a^2 \tan^2 x + b^2} dx=∫04πa2tan2x+b2cos2x1dx=∫0π4sec2xa2tan2x+b2dx\qquad = \int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{a^2 \tan^2 x + b^2} dx=∫04πa2tan2x+b2sec2xdxここで、u=tanxu = \tan xu=tanxと置換すると、du=sec2xdxdu = \sec^2 x dxdu=sec2xdxとなり、積分範囲はx=0x=0x=0のときu=tan0=0u = \tan 0 = 0u=tan0=0、x=π4x=\frac{\pi}{4}x=4πのときu=tanπ4=1u = \tan \frac{\pi}{4} = 1u=tan4π=1となります。∫0π4sec2xa2tan2x+b2dx=∫01dua2u2+b2\qquad \int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{a^2 \tan^2 x + b^2} dx = \int_{0}^{1} \frac{du}{a^2 u^2 + b^2}∫04πa2tan2x+b2sec2xdx=∫01a2u2+b2duさらに、u=bavu = \frac{b}{a}vu=abvと置換すると、du=badvdu = \frac{b}{a}dvdu=abdvとなり、積分範囲はu=0u=0u=0のときv=0v=0v=0、u=1u=1u=1のときv=abv=\frac{a}{b}v=baとなります。∫01dua2u2+b2=∫0abbadva2(bav)2+b2=∫0abbadva2b2a2v2+b2\qquad \int_{0}^{1} \frac{du}{a^2 u^2 + b^2} = \int_{0}^{\frac{a}{b}} \frac{\frac{b}{a} dv}{a^2 (\frac{b}{a} v)^2 + b^2} = \int_{0}^{\frac{a}{b}} \frac{\frac{b}{a} dv}{a^2 \frac{b^2}{a^2} v^2 + b^2}∫01a2u2+b2du=∫0baa2(abv)2+b2abdv=∫0baa2a2b2v2+b2abdv=∫0abbadvb2v2+b2=ba∫0abdvb2(v2+1)=bab2∫0abdvv2+1\qquad = \int_{0}^{\frac{a}{b}} \frac{\frac{b}{a} dv}{b^2 v^2 + b^2} = \frac{b}{a} \int_{0}^{\frac{a}{b}} \frac{dv}{b^2 (v^2 + 1)} = \frac{b}{a b^2} \int_{0}^{\frac{a}{b}} \frac{dv}{v^2 + 1}=∫0bab2v2+b2abdv=ab∫0bab2(v2+1)dv=ab2b∫0bav2+1dv=1ab[arctanv]0ab=1ab(arctanab−arctan0)=1ab(arctanab−0)\qquad = \frac{1}{ab} [\arctan v]_{0}^{\frac{a}{b}} = \frac{1}{ab} (\arctan \frac{a}{b} - \arctan 0) = \frac{1}{ab} (\arctan \frac{a}{b} - 0)=ab1[arctanv]0ba=ab1(arctanba−arctan0)=ab1(arctanba−0)=1abarctanab\qquad = \frac{1}{ab} \arctan \frac{a}{b}=ab1arctanba3. 最終的な答え1abarctanab\qquad \frac{1}{ab} \arctan \frac{a}{b}ab1arctanba