3人でじゃんけんをする場合の確率を求める問題です。 (1) 1回目があいこで、2回目に1人の勝者が決まる確率 (2) 1回目に2人勝ち、2回目に1人の勝者が決まる確率 (3) 2回目に初めて1人の勝者が決まる確率 の3つの確率を求めます。

確率論・統計学確率じゃんけん組み合わせ
2025/7/23

1. 問題の内容

3人でじゃんけんをする場合の確率を求める問題です。
(1) 1回目があいこで、2回目に1人の勝者が決まる確率
(2) 1回目に2人勝ち、2回目に1人の勝者が決まる確率
(3) 2回目に初めて1人の勝者が決まる確率
の3つの確率を求めます。

2. 解き方の手順

(1) 1回目あいこで、2回目に1人の勝者が決まる確率
3人が出す手の組み合わせは 33=273^3 = 27 通りあります。
あいこになるのは、全員が同じ手を出すか、全員が異なる手を出す場合の2パターンです。
全員が同じ手を出すのは3通り(グー、チョキ、パー)。
全員が異なる手を出すのは 3!=63! = 6 通り。
したがって、あいこになるのは 3+6=93 + 6 = 9 通り。
あいこになる確率は 9/27=1/39/27 = 1/3
2回目に1人の勝者が決まるのは、3人の中から1人が勝ち、残りの2人が負ける場合です。
勝つ手を1つ選び、負ける手を1つ選ぶと、勝つ人の選び方が3通り、負ける手の選び方が1通りあるので、3×1=33 \times 1 = 3通りです。
3人の中から1人が勝つ手の組み合わせは3通り(グーで勝つ、チョキで勝つ、パーで勝つ)。
したがって、1人の勝者が決まるのは 3×3=93 \times 3 = 9 通り。
1人の勝者が決まる確率は 9/27=1/39/27 = 1/3
求める確率は、1回目があいこになり、2回目に1人の勝者が決まる確率なので、
(1/3)×(1/3)=1/9(1/3) \times (1/3) = 1/9
(2) 1回目に2人勝ち、2回目に1人の勝者が決まる確率
1回目に2人勝ちになるのは、3人の中から2人が勝ち、1人が負ける場合です。
勝つ手を1つ選び、負ける手を1つ選ぶと、勝つ人の選び方が 3C2=3{}_3C_2 = 3通り、負ける手の選び方が1通りあるので、3×1=33 \times 1 = 3通りです。
2人が勝つ手の組み合わせは3通り(グーで勝つ、チョキで勝つ、パーで勝つ)。
したがって、2人が勝つのは 3×3=93 \times 3 = 9 通り。
2人勝ちになる確率は 9/27=1/39/27 = 1/3
2回目に1人の勝者が決まるのは、先ほどと同様に 1/31/3 です。
求める確率は、1回目に2人勝ちになり、2回目に1人の勝者が決まる確率なので、
(1/3)×(1/3)=1/9(1/3) \times (1/3) = 1/9
(3) 2回目に初めて1人の勝者が決まる確率
これは、1回目があいこ、または2人勝ちで、2回目に1人の勝者が決まる確率です。
1回目があいこになる確率は 1/31/3
1回目に2人勝ちになる確率は 1/31/3
1回目にあいこまたは2人勝ちになる確率は 1/3+1/3=2/31/3 + 1/3 = 2/3
2回目に1人の勝者が決まる確率は 1/31/3
したがって、2回目に初めて1人の勝者が決まる確率は、
(2/3)×(1/3)=2/9(2/3) \times (1/3) = 2/9

3. 最終的な答え

(1) 1/9
(2) 1/9
(3) 2/9

「確率論・統計学」の関連問題

A, Bの2つのチームが試合を行い、先に4勝したチームが優勝する。各試合において、両チームの勝つ確率はそれぞれ$\frac{1}{2}$であり、引き分けはないものとする。 (1) 4試合目で勝負が決ま...

確率二項係数組み合わせ
2025/7/25

AからFの6チームで行われた野球のリーグ戦の結果から、確実に言えるものを選択肢の中から選び出す問題です。勝率の計算式は、勝数 / (試合数 - 引き分け数)で与えられています。

勝率リーグ戦確率論理
2025/7/25

大小2つのサイコロを振ったとき、出た目の数の積が奇数になる確率を求める問題です。

確率サイコロ奇数
2025/7/25

あるサイコロを300回投げた結果が表に示されている。このサイコロが公正である(どの面も確率 1/6 で出る)と言えるかどうかを、有意水準 5% で検定する。

仮説検定カイ二乗検定統計的推測確率分布
2025/7/25

福祉事業に従事する200人にアンケートを実施した結果が表で与えられています。 (1) 今の仕事は自分の能力や性格にあっていると思うかどうか。 (2) 自分にあった仕事をしている人ほど、今の仕事をいつま...

仮説検定カイ二乗検定統計的推測
2025/7/25

## 問題の解答

順列組合せ場合の数
2025/7/24

2000人の有権者に対してアンケートを行ったところ、762人が現内閣を支持していた。全有権者についての支持率の99%信頼区間を求める。

信頼区間標本比率統計的推測
2025/7/24

2000人の有権者に対してアンケートを取り、現内閣を支持する人が762人であった。全有権者の支持率の99%信頼区間を求める。

信頼区間母比率統計的推測
2025/7/24

3つの問題があります。 * **問19**: 成人女性15人の尿中の尿酸値を調べたところ、その平均値は4.4g/dl、標準偏差は0.59g/dlであった。平均尿酸値の90%信頼区間を求めよ。 * ...

信頼区間t分布標本平均標準偏差母平均
2025/7/24

あるブラウン管の寿命の標準偏差は100時間であることがわかっている。平均寿命の99%信頼区間が±20時間以内になるようにするためには、標本の大きさをどれくらいにすればよいか。

統計的推測信頼区間標本サイズ標準偏差
2025/7/24