$a \neq 0$ で、$n$ を正の整数とするとき、$a^0$ と $a^{-n}$ を定義する問題です。

代数学指数法則指数関数定義0乗負の指数
2025/3/11

1. 問題の内容

a0a \neq 0 で、nn を正の整数とするとき、a0a^0ana^{-n} を定義する問題です。

2. 解き方の手順

定義に従って考えます。
* a0a^0 について:
指数法則 am×an=am+na^m \times a^n = a^{m+n} が成り立つように定義します。特に an×a0=an+0=ana^n \times a^0 = a^{n+0} = a^n となることから、a0=1a^0 = 1 と定義するのが自然です。また、0乗は1と定義します。
* ana^{-n} について:
同様に、指数法則 am×an=am+na^m \times a^n = a^{m+n} が成り立つように定義します。特に an×an=ann=a0=1a^n \times a^{-n} = a^{n-n} = a^0 = 1 となることから、an=1ana^{-n} = \frac{1}{a^n} と定義するのが自然です。

3. 最終的な答え

a0=1a^0 = 1
an=1ana^{-n} = \frac{1}{a^n}

「代数学」の関連問題

問題は2つあります。 (1) $\frac{1}{2}(7\vec{a} - 3\vec{b}) + \frac{1}{4}(-6\vec{a} + 5\vec{b})$を簡単にする問題です。 (2)...

ベクトルベクトルの演算線形結合連立方程式
2025/7/16

問題は3つあります。 問題2: 関数 $f(x) = -x^2 + 2ax + 4a + 1$ ($-1 \le x \le 2$) について、$a$ の値によって最大値を取る $x$ の値と最大値...

二次関数最大値最小値放物線平行移動判別式
2025/7/16

与えられた8つの式をそれぞれ計算して、できるだけ簡単な形にすること。

式の計算分配法則同類項一次式
2025/7/16

与えられた条件を満たす直線の方程式を求める問題です。 (1) 傾きが2でy切片が3の場合。 (2) 点(2, -3)を通り、傾きが4の場合。 (3) 2点(2, 0), (3, 2)を通る場合。 (4...

直線の方程式傾きy切片2点を通る直線平行な直線
2025/7/16

$a$は定数とする。関数 $f(x) = -ax^2 - 2ax + 6 - a$ に対して、 (ア) $a > 0$ のとき、$y = f(x)$ のグラフについて、軸の方程式と頂点の座標を求める。...

二次関数平方完成絶対値最大値と最小値
2025/7/16

放物線 $y = 2x^2 - 4x + 3$ を、$x$ 軸方向に $-5$、$y$ 軸方向に $2$ だけ平行移動したときの、移動後の放物線の方程式を求める問題です。

放物線平行移動二次関数
2025/7/16

与えられた2次関数の最大値、または最小値を求める問題です。具体的には、 (2) $y = -3x^2 + 2$ (3) $y = x^2 - 4x - 4$ (4) $y = -2x^2 - 4x -...

二次関数最大値最小値平方完成グラフ
2025/7/16

問題は、不等式 $2a + 3b \leq 2000$ が与えられたときに、この不等式を満たす $a$ と $b$ の条件を見つけることだと考えられます。しかし、問題文だけでは、$a$と$b$がどのよ...

不等式線形不等式実数
2025/7/16

正方形のカードを横に1cmずつ重ねて並べて貼る。 (1) 4枚貼ったときの全体の横の長さを求める。 (2) n枚貼ったときの全体の横の長さをnを使って表す。 (3) クラスの人数が34人で、掲示板の横...

一次式応用問題数量関係計算
2025/7/16

次の2つの計算問題を解きます。 (1) $(6x + 18) \div 3$ (2) $(-42a + 28) \div (-7)$

式の計算分配法則一次式
2025/7/16