$A = 2x^2 - 5xy + 3y^2$, $B = -x^2 + 3xy - 2y^2$, $C = 3x^2 + 2xy - y^2$ のとき、次の4つの式をそれぞれ計算する。代数学多項式式の計算2025/3/111. 問題の内容A=2x2−5xy+3y2A = 2x^2 - 5xy + 3y^2A=2x2−5xy+3y2, B=−x2+3xy−2y2B = -x^2 + 3xy - 2y^2B=−x2+3xy−2y2, C=3x2+2xy−y2C = 3x^2 + 2xy - y^2C=3x2+2xy−y2 のとき、次の4つの式をそれぞれ計算する。2. 解き方の手順各選択肢について、順番に計算を行う。(1) B−CB - CB−CB−C=(−x2+3xy−2y2)−(3x2+2xy−y2)=−x2+3xy−2y2−3x2−2xy+y2=−4x2+xy−y2B - C = (-x^2 + 3xy - 2y^2) - (3x^2 + 2xy - y^2) = -x^2 + 3xy - 2y^2 - 3x^2 - 2xy + y^2 = -4x^2 + xy - y^2B−C=(−x2+3xy−2y2)−(3x2+2xy−y2)=−x2+3xy−2y2−3x2−2xy+y2=−4x2+xy−y2(2) A−B+CA - B + CA−B+CA−B+C=(2x2−5xy+3y2)−(−x2+3xy−2y2)+(3x2+2xy−y2)=2x2−5xy+3y2+x2−3xy+2y2+3x2+2xy−y2=6x2−6xy+4y2A - B + C = (2x^2 - 5xy + 3y^2) - (-x^2 + 3xy - 2y^2) + (3x^2 + 2xy - y^2) = 2x^2 - 5xy + 3y^2 + x^2 - 3xy + 2y^2 + 3x^2 + 2xy - y^2 = 6x^2 - 6xy + 4y^2A−B+C=(2x2−5xy+3y2)−(−x2+3xy−2y2)+(3x2+2xy−y2)=2x2−5xy+3y2+x2−3xy+2y2+3x2+2xy−y2=6x2−6xy+4y2(3) 2C−3A2C - 3A2C−3A2C−3A=2(3x2+2xy−y2)−3(2x2−5xy+3y2)=6x2+4xy−2y2−6x2+15xy−9y2=19xy−11y22C - 3A = 2(3x^2 + 2xy - y^2) - 3(2x^2 - 5xy + 3y^2) = 6x^2 + 4xy - 2y^2 - 6x^2 + 15xy - 9y^2 = 19xy - 11y^22C−3A=2(3x2+2xy−y2)−3(2x2−5xy+3y2)=6x2+4xy−2y2−6x2+15xy−9y2=19xy−11y2(4) (A+2B−C)−2(A−B−C)(A + 2B - C) - 2(A - B - C)(A+2B−C)−2(A−B−C)まず、A+2B−CA + 2B - CA+2B−Cを計算する。A+2B−C=(2x2−5xy+3y2)+2(−x2+3xy−2y2)−(3x2+2xy−y2)=2x2−5xy+3y2−2x2+6xy−4y2−3x2−2xy+y2=−3x2−xyA + 2B - C = (2x^2 - 5xy + 3y^2) + 2(-x^2 + 3xy - 2y^2) - (3x^2 + 2xy - y^2) = 2x^2 - 5xy + 3y^2 - 2x^2 + 6xy - 4y^2 - 3x^2 - 2xy + y^2 = -3x^2 - xyA+2B−C=(2x2−5xy+3y2)+2(−x2+3xy−2y2)−(3x2+2xy−y2)=2x2−5xy+3y2−2x2+6xy−4y2−3x2−2xy+y2=−3x2−xy次に、A−B−CA - B - CA−B−Cを計算する。A−B−C=(2x2−5xy+3y2)−(−x2+3xy−2y2)−(3x2+2xy−y2)=2x2−5xy+3y2+x2−3xy+2y2−3x2−2xy+y2=−10xy+6y2A - B - C = (2x^2 - 5xy + 3y^2) - (-x^2 + 3xy - 2y^2) - (3x^2 + 2xy - y^2) = 2x^2 - 5xy + 3y^2 + x^2 - 3xy + 2y^2 - 3x^2 - 2xy + y^2 = -10xy + 6y^2A−B−C=(2x2−5xy+3y2)−(−x2+3xy−2y2)−(3x2+2xy−y2)=2x2−5xy+3y2+x2−3xy+2y2−3x2−2xy+y2=−10xy+6y2したがって、(A+2B−C)−2(A−B−C)=(−3x2−xy)−2(−10xy+6y2)=−3x2−xy+20xy−12y2=−3x2+19xy−12y2(A + 2B - C) - 2(A - B - C) = (-3x^2 - xy) - 2(-10xy + 6y^2) = -3x^2 - xy + 20xy - 12y^2 = -3x^2 + 19xy - 12y^2(A+2B−C)−2(A−B−C)=(−3x2−xy)−2(−10xy+6y2)=−3x2−xy+20xy−12y2=−3x2+19xy−12y23. 最終的な答え(1) B−C=−4x2+xy−y2B - C = -4x^2 + xy - y^2B−C=−4x2+xy−y2(2) A−B+C=6x2−6xy+4y2A - B + C = 6x^2 - 6xy + 4y^2A−B+C=6x2−6xy+4y2(3) 2C−3A=19xy−11y22C - 3A = 19xy - 11y^22C−3A=19xy−11y2(4) (A+2B−C)−2(A−B−C)=−3x2+19xy−12y2(A + 2B - C) - 2(A - B - C) = -3x^2 + 19xy - 12y^2(A+2B−C)−2(A−B−C)=−3x2+19xy−12y2