$x = 14$、 $y = 11$ のとき、$x^2 - 2xy + y^2$ の値を求める。

代数学因数分解式の値代入
2025/7/24

1. 問題の内容

x=14x = 14y=11y = 11 のとき、x22xy+y2x^2 - 2xy + y^2 の値を求める。

2. 解き方の手順

与えられた式 x22xy+y2x^2 - 2xy + y^2(xy)2(x-y)^2 と因数分解できる。
x22xy+y2=(xy)2x^2 - 2xy + y^2 = (x-y)^2
x=14x = 14y=11y = 11 を代入すると、
(xy)2=(1411)2=(3)2=9(x-y)^2 = (14 - 11)^2 = (3)^2 = 9

3. 最終的な答え

9

「代数学」の関連問題

複素数の割り算 $\frac{1+8i}{2+3i}$ を計算し、結果を $a+bi$ の形で表す問題です。

複素数複素数の計算割り算
2025/7/29

複素数の積 $(1-6i)(4+i)$ を計算し、最も簡単な形で表現します。

複素数複素数の積計算
2025/7/29

複素数の二乗の計算を行う問題です。具体的には、$(2+i)^2$を計算します。ここで、$i$ は虚数単位であり、$i^2 = -1$ が成り立ちます。

複素数複素数の計算二乗
2025/7/29

与えられた複素数の引き算 $(6-i) - (3-8i)$ を計算する問題です。

複素数複素数の計算引き算
2025/7/29

与えられた等式が $x$ についての恒等式となるように、定数 $a$, $b$, $c$ の値を求める問題です。具体的には、以下の4つの問題があります。 (1) $3x + 1 = a(x - 1)(...

恒等式分数式部分分数分解係数比較
2025/7/29

与えられた複素数の足し算を計算する問題です。具体的には、$(4-3i) + (3-2i)$ を計算します。

複素数複素数の加算
2025/7/29

数列 $\{a_n\}$ が与えられており、$a_1 = 1$ かつ $a_{n+1} = \frac{a_n}{2na_n + 3}$ (for $n=1, 2, \dots$) である。この数列の...

数列漸化式一般項
2025/7/29

不等式 $\log_2{x^2} \le 2\log_2{(\frac{1}{2}x + 3)}$ を解く問題です。

対数不等式真数条件二次不等式
2025/7/29

複素数の等式 $(3x-2y+1)+(x+3y-7)i = 5 + 9i$ を満たす実数 $x$ と $y$ の値を求める問題です。

複素数連立方程式実数
2025/7/29

数列 $\{a_n\}$ が、$a_1 = 1$ および漸化式 $a_{n+1} = \frac{a_n}{2na_n + 3}$ (n = 1, 2, ...) で定義されている。この数列の一般項を...

数列漸化式一般項
2025/7/29