与えられた積分を計算します。 $$ \int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx $$解析学積分三角関数置換積分部分分数分解2025/3/111. 問題の内容与えられた積分を計算します。∫x2+72(xsinx+9cosx)2dx \int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx ∫(xsinx+9cosx)2x2+72dx2. 解き方の手順まず、xsinx+9cosxx \sin x + 9 \cos xxsinx+9cosx の微分を計算します。ddx(xsinx+9cosx)=sinx+xcosx−9sinx=xcosx−8sinx \frac{d}{dx} (x \sin x + 9 \cos x) = \sin x + x \cos x - 9 \sin x = x \cos x - 8 \sin x dxd(xsinx+9cosx)=sinx+xcosx−9sinx=xcosx−8sinx被積分関数を変形します。x2+72(xsinx+9cosx)2=x2+81−9(xsinx+9cosx)2=x2−9sin2x+81−72sin2x−9cos2x+9cos2x+9sin2x(xsinx+9cosx)2=x2−9sin2x−72sin2x+81cos2x−9cos2x(xsinx+9cosx)2+9xsinx+9cosx)2 \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} = \frac{x^2 + 81 - 9}{(x \sin x + 9 \cos x)^2} = \frac{x^2 - 9 \sin^2 x + 81 - 72 \sin^2 x - 9 \cos^2 x + 9 \cos^2 x + 9 \sin^2 x}{(x \sin x + 9 \cos x)^2} = \frac{x^2 - 9 \sin^2 x - 72 \sin^2 x + 81 \cos^2 x - 9 \cos^2 x}{(x \sin x + 9 \cos x)^2} + \frac{9}{x \sin x + 9 \cos x)^2} (xsinx+9cosx)2x2+72=(xsinx+9cosx)2x2+81−9=(xsinx+9cosx)2x2−9sin2x+81−72sin2x−9cos2x+9cos2x+9sin2x=(xsinx+9cosx)2x2−9sin2x−72sin2x+81cos2x−9cos2x+xsinx+9cosx)29ddx(−9cosx+xsinxxsinx+9cosx)=(−9(−sinx)+sinx+xcosx)(xsinx+9cosx)−(−9cosx+xsinx)(xcosx−8sinx)(xsinx+9cosx)2 \frac{d}{dx} \left( \frac{-9 \cos x + x \sin x}{x \sin x + 9 \cos x} \right) = \frac{(-9 (-\sin x) + \sin x + x \cos x)(x \sin x + 9 \cos x) - (-9 \cos x + x \sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} dxd(xsinx+9cosx−9cosx+xsinx)=(xsinx+9cosx)2(−9(−sinx)+sinx+xcosx)(xsinx+9cosx)−(−9cosx+xsinx)(xcosx−8sinx)(10sinx+xcosx)(xsinx+9cosx)−(−9cosx+xsinx)(xcosx−8sinx)(xsinx+9cosx)2 \frac{(10 \sin x + x \cos x)(x \sin x + 9 \cos x) - (-9 \cos x + x \sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} (xsinx+9cosx)2(10sinx+xcosx)(xsinx+9cosx)−(−9cosx+xsinx)(xcosx−8sinx)10xsin2x+90sinxcosx+x2sinxcosx+9xcos2x−(−9xcos2x+72cosxsinx+x2sinxcosx−8xsin2x)(xsinx+9cosx)2 \frac{10 x \sin^2 x + 90 \sin x \cos x + x^2 \sin x \cos x + 9 x \cos^2 x - (-9 x \cos^2 x + 72 \cos x \sin x + x^2 \sin x \cos x - 8 x \sin^2 x)}{(x \sin x + 9 \cos x)^2} (xsinx+9cosx)210xsin2x+90sinxcosx+x2sinxcosx+9xcos2x−(−9xcos2x+72cosxsinx+x2sinxcosx−8xsin2x)10xsin2x+90sinxcosx+9xcos2x+9xcos2x−72sinxcosx+8xsin2x(xsinx+9cosx)2=x(18sin2x+18cos2x)+(90−72)sinxcosx(xsinx+9cosx)2 \frac{10 x \sin^2 x + 90 \sin x \cos x + 9 x \cos^2 x + 9 x \cos^2 x - 72 \sin x \cos x + 8 x \sin^2 x}{(x \sin x + 9 \cos x)^2} = \frac{x(18 \sin^2 x + 18 \cos^2 x) + (90 - 72) \sin x \cos x}{(x \sin x + 9 \cos x)^2} (xsinx+9cosx)210xsin2x+90sinxcosx+9xcos2x+9xcos2x−72sinxcosx+8xsin2x=(xsinx+9cosx)2x(18sin2x+18cos2x)+(90−72)sinxcosx18x+18sinxcosx(xsinx+9cosx)2 \frac{18 x + 18 \sin x \cos x}{(x \sin x + 9 \cos x)^2} (xsinx+9cosx)218x+18sinxcosxu=xsinx+9cosxu = x \sin x + 9 \cos xu=xsinx+9cosx と置くと du=(xcosx−8sinx)dxdu = (x \cos x - 8 \sin x) dxdu=(xcosx−8sinx)dx となりますが、これは被積分関数に現れません。−xcosx+sinxcosx+xsinx \frac{-x \cos x + \sin x}{\cos x + x \sin x} cosx+xsinx−xcosx+sinx微分すると x2+1xsinx+cosx2\frac{ x^2 + 1 }{x \sin x + \cos x}^2 xsinx+cosxx2+12ddxuv=u′v−uv′v2\frac{d}{dx} \frac{u}{v} = \frac{u'v - uv'}{v^2}dxdvu=v2u′v−uv′u=−9cos(x),v=xsin(x)+9cos(x)u = -9 cos(x), v = xsin(x) + 9 cos(x) u=−9cos(x),v=xsin(x)+9cos(x)u′=+9sin(x),v′=xcos(x)−8sin(x)u' = +9 sin(x), v' = xcos(x) - 8 sin(x) u′=+9sin(x),v′=xcos(x)−8sin(x)uv=−9cosxxsinx+9cosx \frac{u}{v} = \frac{-9 \cos x}{x \sin x + 9 \cos x}vu=xsinx+9cosx−9cosx9sin(x)(xsin(x)+9cos(x))−(−9cos(x))(xcos(x)−8sin(x))(xsin(x)+9cos(x))2\frac{9 sin(x) (xsin(x) + 9 cos(x)) - (-9cos(x))(x cos(x) - 8 sin(x))}{(x sin(x) + 9 cos(x))^2}(xsin(x)+9cos(x))29sin(x)(xsin(x)+9cos(x))−(−9cos(x))(xcos(x)−8sin(x))x+x2 \frac{x + x^2}{}x+x2x2+72(xsinx+9cosx)2\frac{x^2 + 72}{(x \sin x + 9 \cos x)^2}(xsinx+9cosx)2x2+72=−9cos(x)xsin(x)+9cos(x)= - \frac{9 \cos(x)}{x \sin(x) + 9 \cos(x)}=−xsin(x)+9cos(x)9cos(x)∫x2+81−9(xsinx+9cosx)2dx=−xsinx \int \frac{x^2 + 81 - 9}{(x \sin x + 9 \cos x)^2}dx = \frac{-x}{\sin x} ∫(xsinx+9cosx)2x2+81−9dx=sinx−x∫x2+92(xsinx+9cosx)2dx=−x(xsinx+cosx \int \frac{x^2 + 9^2}{(x \sin x + 9 \cos x)^2} dx = \frac{-x}{(x\sin{x} + \cos{x}} ∫(xsinx+9cosx)2x2+92dx=(xsinx+cosx−x3. 最終的な答え−xsinx+cosx \frac{-x}{\sin x + \cos x} sinx+cosx−x−xxsinx+9cosx+C \frac{-x }{x \sin x +9 \cos x} + Cxsinx+9cosx−x+C−9cosxxsinx+9cosxdx+C\frac{-9cos x }{x sin x + 9cos x} dx+ Cxsinx+9cosx−9cosxdx+CFinal Answer: The final answer is −xxsin(x)+9cos(x)\boxed{\frac{-x}{x\sin(x)+9\cos(x)}}xsin(x)+9cos(x)−x