与えられた無限等比級数 $1 - \frac{x-1}{3} + \frac{(x-1)^2}{9} - \frac{(x-1)^3}{27} + \cdots$ が収束するような実数 $x$ の値の範囲を求める。

解析学無限級数等比級数収束絶対値不等式
2025/7/24

1. 問題の内容

与えられた無限等比級数 1x13+(x1)29(x1)327+1 - \frac{x-1}{3} + \frac{(x-1)^2}{9} - \frac{(x-1)^3}{27} + \cdots が収束するような実数 xx の値の範囲を求める。

2. 解き方の手順

この無限級数は、初項が1、公比が x13-\frac{x-1}{3} の等比級数です。
等比級数が収束するための条件は、公比の絶対値が1より小さいことです。
したがって、次の不等式が成り立つ必要があります。
x13<1|-\frac{x-1}{3}| < 1
この不等式を解きます。
x13<1\frac{|x-1|}{3} < 1
x1<3|x-1| < 3
3<x1<3-3 < x-1 < 3
両辺に1を加えます。
3+1<x<3+1-3 + 1 < x < 3 + 1
2<x<4-2 < x < 4
したがって、無限等比級数が収束するための xx の範囲は、2<x<4-2 < x < 4 です。

3. 最終的な答え

2<x<4-2 < x < 4

「解析学」の関連問題

(1) $sin(2\theta) > cos(\theta)$ を満たす $\theta$ の範囲を $0 \le \theta < 2\pi$ で求めます。 (2) $2sin(\theta)co...

三角関数三角不等式不等式三角関数の合成
2025/7/25

以下の定積分、不定積分を計算します。 (4) $\int 4x^7 dx$ (5) $\int (x+3)(x-3) dx$ (6) $\int_{-1}^{1} 2x^4 dx$ (7) $\int...

積分定積分不定積分積分計算
2025/7/25

関数 $f(x) = x^x$ について、$\lim_{x \to +0} f(x)$ を求め、さらに $x \to +0$ のときの $f'(x)$ の振る舞いを求める問題です。選択肢から適切なもの...

極限微分ロピタルの定理関数の振る舞い
2025/7/25

(1) $\sqrt{24}$ の近似値を求める。 (2) $x \gg \Delta x$ のとき、$\sqrt{\frac{x}{x - \Delta x}}$ の近似値を、 $(\Delta x...

近似平方根テイラー展開
2025/7/25

関数 $\frac{1}{1+x^2}$ のマクローリン展開として正しいものを選択する問題です。選択肢は (a) から (e) までの5つあります。

マクローリン展開関数級数等比数列
2025/7/25

関数 $f(x) = \frac{1}{1+x^2}$ のマクローリン展開を求める問題です。

マクローリン展開べき級数等比数列関数
2025/7/25

$\lim_{x \to 0} \frac{\sin^{-1} x - x}{x^3}$ を計算します。

極限ロピタルの定理逆三角関数
2025/7/25

広義積分 $\int_{1}^{\infty} \log\left(1 + \frac{1}{x^2}\right) dx$ の値を求める問題です。

広義積分部分積分対数関数arctan
2025/7/25

## 1. 問題の内容

不定積分部分積分変数変換
2025/7/25

(a) 関数 $y = |x^3(x-1)|$ について、$x=0$ および $x=1$ における連続性と微分可能性を調べよ。 (b) 関数 $y = \frac{1}{1+2|x|}$ について、$...

関数の連続性関数の微分可能性絶対値関数極限
2025/7/25