広義積分 $\int_{1}^{\infty} \log\left(1 + \frac{1}{x^2}\right) dx$ の値を求める問題です。解析学広義積分部分積分対数関数arctan2025/7/251. 問題の内容広義積分 ∫1∞log(1+1x2)dx\int_{1}^{\infty} \log\left(1 + \frac{1}{x^2}\right) dx∫1∞log(1+x21)dx の値を求める問題です。2. 解き方の手順まず、部分積分を用いて積分を計算します。u=log(1+1x2)u = \log\left(1 + \frac{1}{x^2}\right)u=log(1+x21), dv=dxdv = dxdv=dx とおくと、du=11+1x2⋅(−2x3)dx=x2x2+1⋅(−2x3)dx=−2x(x2+1)dxdu = \frac{1}{1 + \frac{1}{x^2}} \cdot \left(-\frac{2}{x^3}\right) dx = \frac{x^2}{x^2 + 1} \cdot \left(-\frac{2}{x^3}\right) dx = -\frac{2}{x(x^2+1)} dxdu=1+x211⋅(−x32)dx=x2+1x2⋅(−x32)dx=−x(x2+1)2dx, v=xv = xv=x となります。∫1∞log(1+1x2)dx=[xlog(1+1x2)]1∞−∫1∞x(−2x(x2+1))dx\int_{1}^{\infty} \log\left(1 + \frac{1}{x^2}\right) dx = \left[x \log\left(1 + \frac{1}{x^2}\right)\right]_{1}^{\infty} - \int_{1}^{\infty} x \left(-\frac{2}{x(x^2+1)}\right) dx∫1∞log(1+x21)dx=[xlog(1+x21)]1∞−∫1∞x(−x(x2+1)2)dx=[xlog(1+1x2)]1∞+2∫1∞1x2+1dx= \left[x \log\left(1 + \frac{1}{x^2}\right)\right]_{1}^{\infty} + 2 \int_{1}^{\infty} \frac{1}{x^2+1} dx=[xlog(1+x21)]1∞+2∫1∞x2+11dxx→∞x \to \inftyx→∞ のとき、xlog(1+1x2)≈x⋅1x2=1x→0x \log\left(1 + \frac{1}{x^2}\right) \approx x \cdot \frac{1}{x^2} = \frac{1}{x} \to 0xlog(1+x21)≈x⋅x21=x1→0x=1x = 1x=1 のとき、xlog(1+1x2)=log(1+1)=log2x \log\left(1 + \frac{1}{x^2}\right) = \log(1+1) = \log 2xlog(1+x21)=log(1+1)=log2したがって、[xlog(1+1x2)]1∞=0−log2=−log2\left[x \log\left(1 + \frac{1}{x^2}\right)\right]_{1}^{\infty} = 0 - \log 2 = -\log 2[xlog(1+x21)]1∞=0−log2=−log2∫1∞1x2+1dx=[arctanx]1∞=arctan(∞)−arctan(1)=π2−π4=π4\int_{1}^{\infty} \frac{1}{x^2+1} dx = [\arctan x]_{1}^{\infty} = \arctan(\infty) - \arctan(1) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}∫1∞x2+11dx=[arctanx]1∞=arctan(∞)−arctan(1)=2π−4π=4πよって、∫1∞log(1+1x2)dx=−log2+2⋅π4=−log2+π2=π2−log2\int_{1}^{\infty} \log\left(1 + \frac{1}{x^2}\right) dx = -\log 2 + 2 \cdot \frac{\pi}{4} = -\log 2 + \frac{\pi}{2} = \frac{\pi}{2} - \log 2∫1∞log(1+x21)dx=−log2+2⋅4π=−log2+2π=2π−log23. 最終的な答えπ2−log2\frac{\pi}{2} - \log 22π−log2