次の関数のn次導関数を求めよ。 (1) $x^2 e^x$ (2) $\frac{1}{x^2-1}$解析学導関数ライプニッツの公式部分分数分解微分2025/7/241. 問題の内容次の関数のn次導関数を求めよ。(1) x2exx^2 e^xx2ex(2) 1x2−1\frac{1}{x^2-1}x2−112. 解き方の手順(1) x2exx^2 e^xx2exのn次導関数を求める。ライプニッツの公式を用いる。u=x2u = x^2u=x2, v=exv = e^xv=exとおくと、u(0)=x2u^{(0)} = x^2u(0)=x2, u(1)=2xu^{(1)} = 2xu(1)=2x, u(2)=2u^{(2)} = 2u(2)=2, u(k)=0u^{(k)} = 0u(k)=0 for k≥3k \ge 3k≥3v(k)=exv^{(k)} = e^xv(k)=ex for all kkkライプニッツの公式より、(uv)(n)=∑k=0n(nk)u(k)v(n−k)(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}(uv)(n)=∑k=0n(kn)u(k)v(n−k)(x2ex)(n)=(n0)x2ex+(n1)2xex+(n2)2ex(x^2 e^x)^{(n)} = \binom{n}{0} x^2 e^x + \binom{n}{1} 2x e^x + \binom{n}{2} 2 e^x(x2ex)(n)=(0n)x2ex+(1n)2xex+(2n)2ex=x2ex+2nxex+n(n−1)ex= x^2 e^x + 2n x e^x + n(n-1) e^x=x2ex+2nxex+n(n−1)ex=(x2+2nx+n(n−1))ex= (x^2 + 2nx + n(n-1))e^x=(x2+2nx+n(n−1))ex(2) 1x2−1\frac{1}{x^2-1}x2−11のn次導関数を求める。部分分数分解を用いる。1x2−1=1(x−1)(x+1)=Ax−1+Bx+1\frac{1}{x^2-1} = \frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}x2−11=(x−1)(x+1)1=x−1A+x+1B1=A(x+1)+B(x−1)1 = A(x+1) + B(x-1)1=A(x+1)+B(x−1)x=1x=1x=1のとき、1=2A1 = 2A1=2A より A=12A = \frac{1}{2}A=21x=−1x=-1x=−1のとき、1=−2B1 = -2B1=−2B より B=−12B = -\frac{1}{2}B=−211x2−1=12(1x−1−1x+1)\frac{1}{x^2-1} = \frac{1}{2} \left( \frac{1}{x-1} - \frac{1}{x+1} \right)x2−11=21(x−11−x+11)(1x−a)(n)=(−1)nn!(x−a)n+1\left( \frac{1}{x-a} \right)^{(n)} = \frac{(-1)^n n!}{(x-a)^{n+1}}(x−a1)(n)=(x−a)n+1(−1)nn!(1x2−1)(n)=12((−1)nn!(x−1)n+1−(−1)nn!(x+1)n+1)\left( \frac{1}{x^2-1} \right)^{(n)} = \frac{1}{2} \left( \frac{(-1)^n n!}{(x-1)^{n+1}} - \frac{(-1)^n n!}{(x+1)^{n+1}} \right)(x2−11)(n)=21((x−1)n+1(−1)nn!−(x+1)n+1(−1)nn!)=(−1)nn!2(1(x−1)n+1−1(x+1)n+1)= \frac{(-1)^n n!}{2} \left( \frac{1}{(x-1)^{n+1}} - \frac{1}{(x+1)^{n+1}} \right)=2(−1)nn!((x−1)n+11−(x+1)n+11)3. 最終的な答え(1) (x2ex)(n)=(x2+2nx+n(n−1))ex(x^2 e^x)^{(n)} = (x^2 + 2nx + n(n-1))e^x(x2ex)(n)=(x2+2nx+n(n−1))ex(2) (1x2−1)(n)=(−1)nn!2(1(x−1)n+1−1(x+1)n+1)\left( \frac{1}{x^2-1} \right)^{(n)} = \frac{(-1)^n n!}{2} \left( \frac{1}{(x-1)^{n+1}} - \frac{1}{(x+1)^{n+1}} \right)(x2−11)(n)=2(−1)nn!((x−1)n+11−(x+1)n+11)