与えられた式 $(a + 2b + 3c)(a - 2b + 3c)$ を展開して整理せよ。

代数学展開因数分解多項式
2025/7/25

1. 問題の内容

与えられた式 (a+2b+3c)(a2b+3c)(a + 2b + 3c)(a - 2b + 3c) を展開して整理せよ。

2. 解き方の手順

この式は、和と差の積の形に近いことに気づきます。
(A+B)(AB)=A2B2(A + B)(A - B) = A^2 - B^2 という公式を利用するために、
A=a+3cA = a + 3cB=2bB = 2b と置くと、与式は (A+B)(AB)(A + B)(A - B) となります。
したがって、
\begin{align*}
(a + 2b + 3c)(a - 2b + 3c) &= ((a + 3c) + 2b)((a + 3c) - 2b) \\
&= (a + 3c)^2 - (2b)^2 \\
&= (a^2 + 6ac + 9c^2) - 4b^2 \\
&= a^2 - 4b^2 + 9c^2 + 6ac
\end{align*}

3. 最終的な答え

a24b2+9c2+6aca^2 - 4b^2 + 9c^2 + 6ac

「代数学」の関連問題

ベクトル $\vec{a} = (5, x)$ とベクトル $\vec{b} = (2x, 10)$ が与えられています。問題は $x$ の値を求める問題であると推測されます。ただし、ベクトル $\v...

ベクトル平行連立方程式二次方程式
2025/7/26

与えられた式 $ab - bc + b^2 - ac$ を因数分解してください。

因数分解多項式
2025/7/26

不等式 $(\frac{1}{3})^n < 0.001$ を満たす最小の整数 $n$ を求める問題です。ただし、$\log_{10} 2 = 0.3010$、$\log_{10} 3 = 0.477...

不等式対数常用対数指数整数
2025/7/26

不等式 $(\frac{1}{2})^n < 0.01$ を満たす最小の整数 $n$ を求めよ。ただし、$\log_{10} 2 = 0.3010$ とする。

不等式指数対数常用対数
2025/7/26

問題は、与えられた数式を因数分解することです。具体的には、 (2) $x^2 - y^2 + 6y - 9$ (3) $9x^4 + 5x^2 - 4$ の2つの式を因数分解します。

因数分解二次方程式多項式
2025/7/26

(1) $\sqrt[3]{2}$ が無理数であることを証明せよ。 (2) $P(x)$ を有理数を係数とする $x$ の多項式で、$P(\sqrt[3]{2}) = 0$ を満たしているとする。この...

無理数多項式代数学の基本定理背理法
2025/7/26

連立不等式 $x \geq 0, y \geq 0, x + 2y \leq 10, 2x + y \leq 14$ を満たす $x, y$ について、 (1) $x+3y$ の取りうる値の範囲を求め...

連立不等式最大値線形計画法領域
2025/7/26

2つの不等式 $3|x| - |x-2| \le 8$ (①) と $2x+7 \ge 0$ (②) について、以下の問いに答える問題です。 (1) $x$ の範囲によって $3|x| - |x-2|...

絶対値不等式数直線
2025/7/26

4次方程式 $x^4 - 3x^3 + ax^2 + bx + c = 0$ について、以下の問いに答えます。 (1) $a=-4$, $b=0$, $c=0$ のときの解を求めます。 (2) $a=...

方程式4次方程式解の公式複素数因数定理因数分解
2025/7/26

数列 $\{a_n\}$ と $\{b_n\}$ が漸化式 $a_{n+1} = 6a_n + 2b_n$, $b_{n+1} = -2a_n + 2b_n$ で定義され、初期値は $a_1 = 2$...

数列漸化式等比数列等差数列級数
2025/7/26