不等式 $(\frac{1}{2})^n < 0.01$ を満たす最小の整数 $n$ を求めよ。ただし、$\log_{10} 2 = 0.3010$ とする。

代数学不等式指数対数常用対数
2025/7/26

1. 問題の内容

不等式 (12)n<0.01(\frac{1}{2})^n < 0.01 を満たす最小の整数 nn を求めよ。ただし、log102=0.3010\log_{10} 2 = 0.3010 とする。

2. 解き方の手順

まず、与えられた不等式 (12)n<0.01(\frac{1}{2})^n < 0.01 を変形します。
(12)n<0.01(\frac{1}{2})^n < 0.01 は、2n<11002^{-n} < \frac{1}{100} と書き換えられます。
両辺の逆数を取ると、不等号の向きが変わるので、2n>1002^n > 100 となります。
次に、両辺の常用対数をとります。
log102n>log10100\log_{10} 2^n > \log_{10} 100
nlog102>2n \log_{10} 2 > 2
log102=0.3010\log_{10} 2 = 0.3010 を代入します。
n×0.3010>2n \times 0.3010 > 2
n>20.3010n > \frac{2}{0.3010}
n>2000301n > \frac{2000}{301}
n>6.6445...n > 6.6445...
したがって、nn6.6445...6.6445... より大きい最小の整数なので、n=7n = 7 です。

3. 最終的な答え

7

「代数学」の関連問題

問題は2つあります。 問1:2次方程式 $3x^2 + 5x = 2$ を解く。 問2:2500円のおもちゃを買うために、毎日100円硬貨か50円硬貨のどちらか1枚を貯金箱に入れる。31日後にちょうど...

二次方程式因数分解連立方程式文章問題
2025/7/26

与えられた問題は、以下の2つの不等式が成り立つことを示す問題です。 (1) $|x + y| \leq |x| + |y|$ (三角不等式) (2) $||x| - |y|| \leq |x - y|...

絶対値不等式三角不等式証明
2025/7/26

$2ax^2 - 16ax + 30a$ を因数分解してください。

因数分解平方根大小比較数式変形
2025/7/26

この問題は、以下の3つの小問から構成されています。 (1) 連立方程式 $\begin{cases} 2x+5y=-44 \\ 2x-3y=36 \end{cases}$ を解く。 (2) $2ax^...

連立方程式因数分解平方根大小比較
2025/7/26

$(x+2y)(x-8y)$ を展開する問題です。

展開一次関数式の計算直線の式
2025/7/26

方程式 $5x = 8 - x$ を解いて、$x$ の値を求める問題です。

一次方程式方程式の解法代数
2025/7/26

問題は以下の3つの計算問題を解くことです。 (1) $(+7) + (-3)$ (2) $2(3x - y)$ (3) $\sqrt{18} - \sqrt{8}$

加法分配法則平方根の計算
2025/7/26

方程式 $|x^2 - x - 2| - x + k = 0$ の実数解の個数が3個以上となる $k$ の値の範囲を求めよ。

方程式絶対値グラフ二次関数
2025/7/26

2つの自然数があり、それらの和は82です。大きい方の数 $x$ を3で割ると、商は小さい方の数 $y$ より8大きくなり、余りは2になります。このとき、$x$と$y$を求めるための連立方程式を作り、2...

連立方程式文章問題一次方程式
2025/7/26

放物線 $G: y = x^2 + ax + b$ が点 $(0, 2)$ と $(1, 1)$ を通る。 (1) $a, b$ の値をそれぞれ求め、放物線 $G$ の頂点の座標を求める。 (2) (...

二次関数放物線平行移動対称移動グラフ
2025/7/26