図において、BG//CD である。線分BGと線分ACとの交点をIとする。このとき、$\triangle ABC \sim \triangle BIC$ であることを証明する。

幾何学相似三角形平行線証明
2025/7/26

1. 問題の内容

図において、BG//CD である。線分BGと線分ACとの交点をIとする。このとき、ABCBIC\triangle ABC \sim \triangle BIC であることを証明する。

2. 解き方の手順

ABC\triangle ABCBIC\triangle BIC において、
仮定より、BG//CDである。
したがって、BCG=CBG\angle BCG = \angle CBG (平行線の錯角は等しい)
ゆえに、ACI=CBI\angle ACI = \angle CBI。これを(1)とする。
また、ACB\angle ACB は共通である。これを(2)とする。
(1),(2)より、2組の角がそれぞれ等しいので、ABCBIC\triangle ABC \sim \triangle BIC が成り立つ。

3. 最終的な答え

ABCBIC\triangle ABC \sim \triangle BIC である。

「幾何学」の関連問題

台形ABCDにおいて、BC=9cm、CD=6cm、DA=5cm、∠C=∠D=90°である。点Pは毎秒1cmの速さで点Aを出発し、台形の辺上を点Dを通って点Cまで動く。点Pが点Aを出発してからx秒後の△...

台形面積図形方程式動点
2025/7/26

円の内部に点Aがある。円周上の点のうち、点Aとの距離が最も短い点Pを定規とコンパスを使って作図し、点Pに文字Pを書き入れる。作図に用いた線は消さない。

作図最短距離幾何学的証明
2025/7/26

2つの関数 $y = \frac{1}{2}x + 3$ (これを式①とします) と $y = -2x - 2$ (これを式②とします) のグラフが点Aで交わっています。式①と式②のグラフと $y$ ...

一次関数グラフ交点面積座標
2025/7/26

xy平面上に3点O(0, 0), A(-3, -4), B(12, 5)を頂点とする△OABがある。∠AOBの二等分線と辺ABとの交点をCとするとき、点Cの座標を求める。

座標幾何角の二等分線内分点三角形
2025/7/26

正多角形の1つの外角の大きさが45°であるとき、その正多角形の内角の和を求める問題です。

多角形内角外角正多角形角度
2025/7/26

長方形ABCDの対角線の交点Oを通る線分HF, EGがあり、ADとHFが垂直、ABとEGが垂直となるように引かれている。このとき、△AOHを点Oを中心に回転移動するだけで重なる三角形を求める。

長方形平行四辺形回転移動角度対角線二等分線錯角
2025/7/26

直線lと直線mがあり、点Cで交わっている。線l上に点A,D、線m上に点B,Eがある。線ADは線lに垂直であり、線BEは線mに垂直である。このとき、CD = CEであることを証明せよ。

幾何学証明合同三角形垂直対頂角
2025/7/26

直線 $y = ax + b$ (ただし、$a > 0$, $b > 0$) を①、直線 $y = -\frac{1}{2}x - 1$ を②とします。 これらの2つのグラフが点Aで交わっています。点...

直線連立方程式座標三角形整数
2025/7/26

三角形ABCにおいて、辺BC上に点Pをとり、三角形ABPの面積が三角形APCの面積の3倍になるように、定規とコンパスを用いて点Pを作図する。

作図三角形面積比線分の内分
2025/7/26

線分AB上に点Cをとり、DA=DC、EC=EBとなるように線分ABについて同じ側に点D、Eをとる。$∠ADC=40°、∠AEC=26°、∠CBE=42°$のとき、$∠x$の大きさを求める。

角度二等辺三角形図形
2025/7/26