xy平面上に3点O(0, 0), A(-3, -4), B(12, 5)を頂点とする△OABがある。∠AOBの二等分線と辺ABとの交点をCとするとき、点Cの座標を求める。
2025/7/26
1. 問題の内容
xy平面上に3点O(0, 0), A(-3, -4), B(12, 5)を頂点とする△OABがある。∠AOBの二等分線と辺ABとの交点をCとするとき、点Cの座標を求める。
2. 解き方の手順
まず、OAの長さとOBの長さを求める。
次に、角の二等分線の性質より、AC:CB = OA:OB = 5:13である。
点Cは線分ABを5:13に内分する点であるから、点Cの座標は次の式で求められる。
3. 最終的な答え
点Cの座標は