$a=-5$、 $b=\frac{1}{6}$ のとき、式 $2(a+7b)-8b$ の値を求めます。

代数学式の計算代入一次式
2025/7/26

1. 問題の内容

a=5a=-5b=16b=\frac{1}{6} のとき、式 2(a+7b)8b2(a+7b)-8b の値を求めます。

2. 解き方の手順

まず、与えられた式を展開します。
2(a+7b)8b=2a+14b8b2(a+7b)-8b = 2a + 14b - 8b
次に、同類項をまとめます。
2a+14b8b=2a+6b2a + 14b - 8b = 2a + 6b
次に、aabb にそれぞれの値を代入します。
2a+6b=2(5)+6(16)2a + 6b = 2(-5) + 6(\frac{1}{6})
次に、計算を実行します。
2(5)=102(-5) = -10
6(16)=16(\frac{1}{6}) = 1
したがって、
2a+6b=10+1=92a + 6b = -10 + 1 = -9

3. 最終的な答え

-9

「代数学」の関連問題

次の連立不等式を解きます。 $ \begin{cases} 2x - 3 \leq 5 \\ 3x + 2 > 8 \end{cases} $

連立不等式不等式一次不等式
2025/7/26

(1) 対数不等式 $\log_4(x-3) < 1 + \log_{16}(x-6)$ を解き、選択肢から適切なものを選ぶ。 (2) 指数方程式 $3^{\log_3 2x} = x^2 - 3$ ...

対数指数不等式方程式真数条件
2025/7/26

与えられた連立不等式を解きます。連立不等式は $\begin{cases} x - 3 < 1 \\ x + 8 \ge 5 \end{cases}$ です。

不等式連立不等式数直線
2025/7/26

問題は、次の2つの式を満たす空欄アとイに当てはまる数を求める問題です。 (1) $3^{\frac{4}{3}} = \sqrt[3]{\boxed{ア}}$ (2) $8^{-\frac{1}{3}...

指数法則累乗根計算
2025/7/26

ベクトル $a_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $a_2 = \begin{pmatrix} 2 \\ 5 \\ c \end{pmat...

線形代数ベクトル部分空間次元線形結合
2025/7/26

与えられた対数に関する不等式と方程式を解き、選択肢から答えを選びます。 (1) $\log_2(x-7) < 1 + \log_4(x+1)$ (2) $2^{\log_2 3x} = x^2$ (3...

対数不等式方程式真数条件
2025/7/26

与えられた2つの多項式$(2a^2 + 4a - 9)$と$(3a^2 - 8a + 4)$の和を計算します。

多項式多項式の加算代数
2025/7/26

$\log_{10}2 = 0.3010$ および $\log_{10}3 = 0.4771$ であるとき、以下の問題を解く。 (1) $18^{18}$ は何桁の数か。 (2) $18^{18}$ ...

対数指数桁数最高位の数字末尾の数字常用対数
2025/7/26

次の空欄に当てはまる数を求める問題です。 (1) $\sqrt[a]{4} = 2$ (2) $\sqrt[b]{32} = 2$ $a$ と $b$ に入る数字を答えます。

累乗根指数
2025/7/26

問題は、与えられた二次関数 $y = ax^2 + q$ のグラフを描き、その軸と頂点を答えることです。具体的には、次の3つの関数についてグラフを描き、軸と頂点を求める必要があります。 (1) $y ...

二次関数グラフ放物線頂点
2025/7/26