関数 $y = -2x^2$ について、$x$の値が$-2$から$1$まで増加するときの変化の割合を求める。

代数学二次関数変化の割合関数
2025/4/4

1. 問題の内容

関数 y=2x2y = -2x^2 について、xxの値が2-2から11まで増加するときの変化の割合を求める。

2. 解き方の手順

変化の割合は、yの増加量xの増加量\frac{yの増加量}{xの増加量} で求められます。
まず、x=2x=-2のときのyyの値を計算します。
y=2(2)2=2(4)=8y = -2(-2)^2 = -2(4) = -8
次に、x=1x=1のときのyyの値を計算します。
y=2(1)2=2(1)=2y = -2(1)^2 = -2(1) = -2
xxの増加量は 1(2)=1+2=31 - (-2) = 1 + 2 = 3
yyの増加量は 2(8)=2+8=6-2 - (-8) = -2 + 8 = 6
変化の割合は、63=2\frac{6}{3} = 2

3. 最終的な答え

変化の割合は 22

「代数学」の関連問題

次の連立不等式を解く問題です。 $\begin{cases} (2 - \sqrt{5})x > -1 \\ |3x-5| < 8 \end{cases}$

不等式連立不等式絶対値有理化
2025/4/12

放物線 $y = x^2$ を平行移動したものが、点(2, 3)と(5, 0)を通る。その放物線を表す2次関数を $y = x^2 - \text{コ} x + \text{サシ}$ の形で求めよ。

二次関数放物線平行移動連立方程式
2025/4/12

$m, n$ は実数とする。$mn = 0$ であることは、$m = 0$ であるための何条件か。選択肢の中から適切なものを選ぶ問題。

条件必要条件十分条件命題
2025/4/12

次の不等式を解き、$x$ の範囲を求めます。 $0.4 < 0.1x + 1 < \frac{x}{2} + \frac{7}{5}$

不等式一次不等式不等式の解法
2025/4/12

問題は、公式 $a^3 + b^3 = (a+b)^3 - 3ab(a+b)$ を利用して $a^3 + b^3 + c^3 - 3abc$ を因数分解し、その結果を用いて以下の式を因数分解することで...

因数分解多項式式の展開
2025/4/12

次の2つの式を展開せよ。 (1) $(3a - b + 2)(3a - b - 2)$ (2) $(x - y + 3)(x - y - 2)$

展開多項式文字式
2025/4/12

はい、承知いたしました。画像に写っている数学の問題を解いていきます。どの問題を解くか指定がないため、それぞれ順番に解説していきます。

展開因数分解多項式公式
2025/4/11

画像には、多項式の展開に関する問題がリストアップされています。具体的には、2項の積や2乗の展開などが含まれています。P4とP15に問題が分かれています。

多項式の展開分配法則因数分解2項の積
2025/4/11

与えられた問題は絶対値を含む方程式 $|x+1| + |x-3| = 6$ を解くことです。

絶対値方程式場合分け
2025/4/11

与えられた条件の下で、各式(1)から(12)の値を計算します。

式の計算多項式の展開因数分解式の値
2025/4/11