与えられた関数の積分を求めます。具体的には、$\frac{1}{x^3 + 1}$ の積分を求めます。解析学積分部分分数分解積分計算2025/7/261. 問題の内容与えられた関数の積分を求めます。具体的には、1x3+1\frac{1}{x^3 + 1}x3+11 の積分を求めます。2. 解き方の手順与えられた関数を部分分数分解します。x3+1=(x+1)(x2−x+1)x^3 + 1 = (x + 1)(x^2 - x + 1)x3+1=(x+1)(x2−x+1)したがって、1x3+1=Ax+1+Bx+Cx2−x+1\frac{1}{x^3 + 1} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 - x + 1}x3+11=x+1A+x2−x+1Bx+C両辺に x3+1x^3 + 1x3+1 をかけると、1=A(x2−x+1)+(Bx+C)(x+1)1 = A(x^2 - x + 1) + (Bx + C)(x + 1)1=A(x2−x+1)+(Bx+C)(x+1)1=Ax2−Ax+A+Bx2+Bx+Cx+C1 = Ax^2 - Ax + A + Bx^2 + Bx + Cx + C1=Ax2−Ax+A+Bx2+Bx+Cx+C1=(A+B)x2+(−A+B+C)x+(A+C)1 = (A + B)x^2 + (-A + B + C)x + (A + C)1=(A+B)x2+(−A+B+C)x+(A+C)係数を比較して、A+B=0A + B = 0A+B=0−A+B+C=0-A + B + C = 0−A+B+C=0A+C=1A + C = 1A+C=1A=1−CA = 1 - CA=1−C を A+B=0A + B = 0A+B=0 に代入すると、1−C+B=01 - C + B = 01−C+B=0, B=C−1B = C - 1B=C−1これを −A+B+C=0-A + B + C = 0−A+B+C=0 に代入すると、−(1−C)+(C−1)+C=0-(1 - C) + (C - 1) + C = 0−(1−C)+(C−1)+C=0−1+C+C−1+C=0-1 + C + C - 1 + C = 0−1+C+C−1+C=03C=23C = 23C=2, C=23C = \frac{2}{3}C=32A=1−23=13A = 1 - \frac{2}{3} = \frac{1}{3}A=1−32=31B=23−1=−13B = \frac{2}{3} - 1 = -\frac{1}{3}B=32−1=−31したがって、1x3+1=13x+1+−13x+23x2−x+1=13(1x+1+−x+2x2−x+1)\frac{1}{x^3 + 1} = \frac{\frac{1}{3}}{x + 1} + \frac{-\frac{1}{3}x + \frac{2}{3}}{x^2 - x + 1} = \frac{1}{3}\left(\frac{1}{x + 1} + \frac{-x + 2}{x^2 - x + 1}\right)x3+11=x+131+x2−x+1−31x+32=31(x+11+x2−x+1−x+2)∫1x3+1dx=13∫1x+1dx+13∫−x+2x2−x+1dx\int \frac{1}{x^3 + 1} dx = \frac{1}{3} \int \frac{1}{x + 1} dx + \frac{1}{3} \int \frac{-x + 2}{x^2 - x + 1} dx∫x3+11dx=31∫x+11dx+31∫x2−x+1−x+2dx∫1x+1dx=ln∣x+1∣\int \frac{1}{x + 1} dx = \ln |x + 1|∫x+11dx=ln∣x+1∣∫−x+2x2−x+1dx=∫−12(2x−1)+32x2−x+1dx=−12∫2x−1x2−x+1dx+32∫1x2−x+1dx\int \frac{-x + 2}{x^2 - x + 1} dx = \int \frac{-\frac{1}{2}(2x - 1) + \frac{3}{2}}{x^2 - x + 1} dx = -\frac{1}{2} \int \frac{2x - 1}{x^2 - x + 1} dx + \frac{3}{2} \int \frac{1}{x^2 - x + 1} dx∫x2−x+1−x+2dx=∫x2−x+1−21(2x−1)+23dx=−21∫x2−x+12x−1dx+23∫x2−x+11dx=−12ln∣x2−x+1∣+32∫1(x−12)2+34dx= -\frac{1}{2} \ln |x^2 - x + 1| + \frac{3}{2} \int \frac{1}{(x - \frac{1}{2})^2 + \frac{3}{4}} dx=−21ln∣x2−x+1∣+23∫(x−21)2+431dx=−12ln∣x2−x+1∣+32⋅23arctanx−1232=−12ln∣x2−x+1∣+3arctan2x−13= -\frac{1}{2} \ln |x^2 - x + 1| + \frac{3}{2} \cdot \frac{2}{\sqrt{3}} \arctan \frac{x - \frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{2} \ln |x^2 - x + 1| + \sqrt{3} \arctan \frac{2x - 1}{\sqrt{3}}=−21ln∣x2−x+1∣+23⋅32arctan23x−21=−21ln∣x2−x+1∣+3arctan32x−1∫1x3+1dx=13ln∣x+1∣+13(−12ln∣x2−x+1∣+3arctan2x−13)+C\int \frac{1}{x^3 + 1} dx = \frac{1}{3} \ln |x + 1| + \frac{1}{3}\left(-\frac{1}{2} \ln |x^2 - x + 1| + \sqrt{3} \arctan \frac{2x - 1}{\sqrt{3}}\right) + C∫x3+11dx=31ln∣x+1∣+31(−21ln∣x2−x+1∣+3arctan32x−1)+C=13ln∣x+1∣−16ln∣x2−x+1∣+33arctan2x−13+C= \frac{1}{3} \ln |x + 1| - \frac{1}{6} \ln |x^2 - x + 1| + \frac{\sqrt{3}}{3} \arctan \frac{2x - 1}{\sqrt{3}} + C=31ln∣x+1∣−61ln∣x2−x+1∣+33arctan32x−1+C3. 最終的な答え∫1x3+1dx=13ln∣x+1∣−16ln∣x2−x+1∣+33arctan2x−13+C\int \frac{1}{x^3 + 1} dx = \frac{1}{3} \ln |x + 1| - \frac{1}{6} \ln |x^2 - x + 1| + \frac{\sqrt{3}}{3} \arctan \frac{2x - 1}{\sqrt{3}} + C∫x3+11dx=31ln∣x+1∣−61ln∣x2−x+1∣+33arctan32x−1+C