与えられた6つの関数に対して、それぞれの第$n$次導関数を求める。解析学導関数微分指数関数三角関数対数関数多項式2025/7/261. 問題の内容与えられた6つの関数に対して、それぞれの第nnn次導関数を求める。2. 解き方の手順(1) f(x)=exf(x) = e^xf(x)=exf′(x)=exf'(x) = e^xf′(x)=ex, f′′(x)=exf''(x) = e^xf′′(x)=ex, ... より、f(n)(x)=exf^{(n)}(x) = e^xf(n)(x)=ex(2) f(x)=cosxf(x) = \cos xf(x)=cosxf′(x)=−sinx=cos(x+π2)f'(x) = -\sin x = \cos(x + \frac{\pi}{2})f′(x)=−sinx=cos(x+2π)f′′(x)=−cosx=cos(x+2π2)f''(x) = -\cos x = \cos(x + 2\frac{\pi}{2})f′′(x)=−cosx=cos(x+22π)f′′′(x)=sinx=cos(x+3π2)f'''(x) = \sin x = \cos(x + 3\frac{\pi}{2})f′′′(x)=sinx=cos(x+32π)f(4)(x)=cosx=cos(x+4π2)f^{(4)}(x) = \cos x = \cos(x + 4\frac{\pi}{2})f(4)(x)=cosx=cos(x+42π)したがって、f(n)(x)=cos(x+nπ2)f^{(n)}(x) = \cos(x + n\frac{\pi}{2})f(n)(x)=cos(x+n2π)(3) f(x)=xnf(x) = x^nf(x)=xnf′(x)=nxn−1f'(x) = nx^{n-1}f′(x)=nxn−1f′′(x)=n(n−1)xn−2f''(x) = n(n-1)x^{n-2}f′′(x)=n(n−1)xn−2f′′′(x)=n(n−1)(n−2)xn−3f'''(x) = n(n-1)(n-2)x^{n-3}f′′′(x)=n(n−1)(n−2)xn−3...f(n)(x)=n(n−1)(n−2)...(1)=n!f^{(n)}(x) = n(n-1)(n-2)...(1) = n!f(n)(x)=n(n−1)(n−2)...(1)=n!f(n+1)(x)=0f^{(n+1)}(x) = 0f(n+1)(x)=0したがって、nnn次導関数はn!n!n!(4) f(x)=log(1+x)f(x) = \log(1+x)f(x)=log(1+x)f′(x)=11+x=(1+x)−1f'(x) = \frac{1}{1+x} = (1+x)^{-1}f′(x)=1+x1=(1+x)−1f′′(x)=−1(1+x)−2f''(x) = -1(1+x)^{-2}f′′(x)=−1(1+x)−2f′′′(x)=(−1)(−2)(1+x)−3=2(1+x)−3f'''(x) = (-1)(-2)(1+x)^{-3} = 2(1+x)^{-3}f′′′(x)=(−1)(−2)(1+x)−3=2(1+x)−3f(4)(x)=2(−3)(1+x)−4=−6(1+x)−4f^{(4)}(x) = 2(-3)(1+x)^{-4} = -6(1+x)^{-4}f(4)(x)=2(−3)(1+x)−4=−6(1+x)−4一般化すると、f(n)(x)=(−1)n−1(n−1)!(1+x)−n=(−1)n−1(n−1)!(1+x)nf^{(n)}(x) = (-1)^{n-1}(n-1)!(1+x)^{-n} = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}f(n)(x)=(−1)n−1(n−1)!(1+x)−n=(1+x)n(−1)n−1(n−1)!(5) f(x)=xαf(x) = x^\alphaf(x)=xαf′(x)=αxα−1f'(x) = \alpha x^{\alpha - 1}f′(x)=αxα−1f′′(x)=α(α−1)xα−2f''(x) = \alpha(\alpha - 1) x^{\alpha - 2}f′′(x)=α(α−1)xα−2f′′′(x)=α(α−1)(α−2)xα−3f'''(x) = \alpha(\alpha - 1)(\alpha - 2) x^{\alpha - 3}f′′′(x)=α(α−1)(α−2)xα−3一般化すると、f(n)(x)=α(α−1)(α−2)...(α−n+1)xα−nf^{(n)}(x) = \alpha(\alpha - 1)(\alpha - 2)...(\alpha - n + 1) x^{\alpha - n}f(n)(x)=α(α−1)(α−2)...(α−n+1)xα−n(6) f(x)=eax+bf(x) = e^{ax+b}f(x)=eax+bf′(x)=aeax+bf'(x) = ae^{ax+b}f′(x)=aeax+bf′′(x)=a2eax+bf''(x) = a^2e^{ax+b}f′′(x)=a2eax+bf′′′(x)=a3eax+bf'''(x) = a^3e^{ax+b}f′′′(x)=a3eax+bしたがって、f(n)(x)=aneax+bf^{(n)}(x) = a^n e^{ax+b}f(n)(x)=aneax+b3. 最終的な答え(1) exe^xex(2) cos(x+nπ2)\cos(x + n\frac{\pi}{2})cos(x+n2π)(3) n!n!n!(4) (−1)n−1(n−1)!(1+x)n\frac{(-1)^{n-1}(n-1)!}{(1+x)^n}(1+x)n(−1)n−1(n−1)!(5) α(α−1)(α−2)...(α−n+1)xα−n\alpha(\alpha - 1)(\alpha - 2)...(\alpha - n + 1) x^{\alpha - n}α(α−1)(α−2)...(α−n+1)xα−n(6) aneax+ba^n e^{ax+b}aneax+b