問題は、与えられた関数を積分することです。具体的には、問題番号3の関数 $1/(x^3 + 1)$ の積分を求める必要があります。解析学積分部分分数分解積分計算arctan対数関数2025/7/261. 問題の内容問題は、与えられた関数を積分することです。具体的には、問題番号3の関数 1/(x3+1)1/(x^3 + 1)1/(x3+1) の積分を求める必要があります。2. 解き方の手順まず、x3+1x^3 + 1x3+1 を因数分解します。x3+1=(x+1)(x2−x+1)x^3 + 1 = (x + 1)(x^2 - x + 1)x3+1=(x+1)(x2−x+1)したがって、積分は次のようになります。∫1x3+1dx=∫1(x+1)(x2−x+1)dx\int \frac{1}{x^3 + 1} dx = \int \frac{1}{(x + 1)(x^2 - x + 1)} dx∫x3+11dx=∫(x+1)(x2−x+1)1dx部分分数分解を行います。1(x+1)(x2−x+1)=Ax+1+Bx+Cx2−x+1\frac{1}{(x + 1)(x^2 - x + 1)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 - x + 1}(x+1)(x2−x+1)1=x+1A+x2−x+1Bx+C両辺に (x+1)(x2−x+1)(x + 1)(x^2 - x + 1)(x+1)(x2−x+1) を掛けると、1=A(x2−x+1)+(Bx+C)(x+1)1 = A(x^2 - x + 1) + (Bx + C)(x + 1)1=A(x2−x+1)+(Bx+C)(x+1)1=Ax2−Ax+A+Bx2+Bx+Cx+C1 = Ax^2 - Ax + A + Bx^2 + Bx + Cx + C1=Ax2−Ax+A+Bx2+Bx+Cx+C1=(A+B)x2+(−A+B+C)x+(A+C)1 = (A + B)x^2 + (-A + B + C)x + (A + C)1=(A+B)x2+(−A+B+C)x+(A+C)係数を比較すると、A+B=0A + B = 0A+B=0−A+B+C=0-A + B + C = 0−A+B+C=0A+C=1A + C = 1A+C=1これらの連立方程式を解きます。B=−AB = -AB=−A−A−A+C=0 ⟹ C=2A-A - A + C = 0 \implies C = 2A−A−A+C=0⟹C=2AA+2A=1 ⟹ 3A=1 ⟹ A=13A + 2A = 1 \implies 3A = 1 \implies A = \frac{1}{3}A+2A=1⟹3A=1⟹A=31B=−13B = -\frac{1}{3}B=−31C=23C = \frac{2}{3}C=32したがって、1(x+1)(x2−x+1)=1/3x+1+(−1/3)x+(2/3)x2−x+1\frac{1}{(x + 1)(x^2 - x + 1)} = \frac{1/3}{x + 1} + \frac{(-1/3)x + (2/3)}{x^2 - x + 1}(x+1)(x2−x+1)1=x+11/3+x2−x+1(−1/3)x+(2/3)=13(1x+1+−x+2x2−x+1)= \frac{1}{3} \left( \frac{1}{x + 1} + \frac{-x + 2}{x^2 - x + 1} \right)=31(x+11+x2−x+1−x+2)積分は、∫1x3+1dx=13∫(1x+1+−x+2x2−x+1)dx\int \frac{1}{x^3 + 1} dx = \frac{1}{3} \int \left( \frac{1}{x + 1} + \frac{-x + 2}{x^2 - x + 1} \right) dx∫x3+11dx=31∫(x+11+x2−x+1−x+2)dx=13∫1x+1dx+13∫−x+2x2−x+1dx= \frac{1}{3} \int \frac{1}{x + 1} dx + \frac{1}{3} \int \frac{-x + 2}{x^2 - x + 1} dx=31∫x+11dx+31∫x2−x+1−x+2dx=13ln∣x+1∣+13∫−x+2x2−x+1dx= \frac{1}{3} \ln|x + 1| + \frac{1}{3} \int \frac{-x + 2}{x^2 - x + 1} dx=31ln∣x+1∣+31∫x2−x+1−x+2dx∫−x+2x2−x+1dx=∫−12(2x−1)+32x2−x+1dx\int \frac{-x + 2}{x^2 - x + 1} dx = \int \frac{-\frac{1}{2}(2x - 1) + \frac{3}{2}}{x^2 - x + 1} dx∫x2−x+1−x+2dx=∫x2−x+1−21(2x−1)+23dx=−12∫2x−1x2−x+1dx+32∫1x2−x+1dx= -\frac{1}{2} \int \frac{2x - 1}{x^2 - x + 1} dx + \frac{3}{2} \int \frac{1}{x^2 - x + 1} dx=−21∫x2−x+12x−1dx+23∫x2−x+11dx=−12ln∣x2−x+1∣+32∫1(x−12)2+34dx= -\frac{1}{2} \ln|x^2 - x + 1| + \frac{3}{2} \int \frac{1}{(x - \frac{1}{2})^2 + \frac{3}{4}} dx=−21ln∣x2−x+1∣+23∫(x−21)2+431dx=−12ln∣x2−x+1∣+32⋅23arctan(x−1232)+C= -\frac{1}{2} \ln|x^2 - x + 1| + \frac{3}{2} \cdot \frac{2}{\sqrt{3}} \arctan\left(\frac{x - \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) + C=−21ln∣x2−x+1∣+23⋅32arctan(23x−21)+C=−12ln∣x2−x+1∣+3arctan(2x−13)+C= -\frac{1}{2} \ln|x^2 - x + 1| + \sqrt{3} \arctan\left(\frac{2x - 1}{\sqrt{3}}\right) + C=−21ln∣x2−x+1∣+3arctan(32x−1)+Cしたがって、∫1x3+1dx=13ln∣x+1∣+13(−12ln∣x2−x+1∣+3arctan(2x−13))+C\int \frac{1}{x^3 + 1} dx = \frac{1}{3} \ln|x + 1| + \frac{1}{3} \left( -\frac{1}{2} \ln|x^2 - x + 1| + \sqrt{3} \arctan\left(\frac{2x - 1}{\sqrt{3}}\right) \right) + C∫x3+11dx=31ln∣x+1∣+31(−21ln∣x2−x+1∣+3arctan(32x−1))+C=13ln∣x+1∣−16ln∣x2−x+1∣+33arctan(2x−13)+C= \frac{1}{3} \ln|x + 1| - \frac{1}{6} \ln|x^2 - x + 1| + \frac{\sqrt{3}}{3} \arctan\left(\frac{2x - 1}{\sqrt{3}}\right) + C=31ln∣x+1∣−61ln∣x2−x+1∣+33arctan(32x−1)+C=16(2ln∣x+1∣−ln∣x2−x+1∣+23arctan(2x−13))+C= \frac{1}{6} \left( 2 \ln|x + 1| - \ln|x^2 - x + 1| + 2\sqrt{3} \arctan\left(\frac{2x - 1}{\sqrt{3}}\right) \right) + C=61(2ln∣x+1∣−ln∣x2−x+1∣+23arctan(32x−1))+C=16ln(x+1)2x2−x+1+39arctan(2x−13)+C= \frac{1}{6} \ln \frac{(x + 1)^2}{x^2 - x + 1} + \frac{\sqrt{3}}{9} \arctan\left(\frac{2x-1}{\sqrt{3}}\right)+ C=61lnx2−x+1(x+1)2+93arctan(32x−1)+C3. 最終的な答え13ln∣x+1∣−16ln(x2−x+1)+33arctan(2x−13)+C\frac{1}{3}\ln|x+1| - \frac{1}{6}\ln(x^2-x+1) + \frac{\sqrt{3}}{3}\arctan(\frac{2x-1}{\sqrt{3}}) + C31ln∣x+1∣−61ln(x2−x+1)+33arctan(32x−1)+Cまたは16ln(x+1)2x2−x+1+39arctan(2x−13)+C\frac{1}{6} \ln \frac{(x + 1)^2}{x^2 - x + 1} + \frac{\sqrt{3}}{9} \arctan\left(\frac{2x-1}{\sqrt{3}}\right)+ C61lnx2−x+1(x+1)2+93arctan(32x−1)+C