与えられた有理関数 $\frac{1}{x^3+1}$ を積分せよ。解析学積分有理関数部分分数分解2025/7/261. 問題の内容与えられた有理関数 1x3+1\frac{1}{x^3+1}x3+11 を積分せよ。2. 解き方の手順まず、分母を因数分解する。x3+1=(x+1)(x2−x+1)x^3 + 1 = (x+1)(x^2-x+1)x3+1=(x+1)(x2−x+1)したがって、与えられた関数は1x3+1=1(x+1)(x2−x+1)\frac{1}{x^3+1} = \frac{1}{(x+1)(x^2-x+1)}x3+11=(x+1)(x2−x+1)1部分分数分解を行う。1(x+1)(x2−x+1)=Ax+1+Bx+Cx2−x+1\frac{1}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}(x+1)(x2−x+1)1=x+1A+x2−x+1Bx+C両辺に (x+1)(x2−x+1)(x+1)(x^2-x+1)(x+1)(x2−x+1) をかけると1=A(x2−x+1)+(Bx+C)(x+1)1 = A(x^2-x+1) + (Bx+C)(x+1)1=A(x2−x+1)+(Bx+C)(x+1)1=Ax2−Ax+A+Bx2+Bx+Cx+C1 = Ax^2 - Ax + A + Bx^2 + Bx + Cx + C1=Ax2−Ax+A+Bx2+Bx+Cx+C1=(A+B)x2+(−A+B+C)x+(A+C)1 = (A+B)x^2 + (-A+B+C)x + (A+C)1=(A+B)x2+(−A+B+C)x+(A+C)係数を比較するとA+B=0A+B = 0A+B=0−A+B+C=0-A+B+C = 0−A+B+C=0A+C=1A+C = 1A+C=1これらの連立方程式を解く。A=−BA = -BA=−B より、 −(−B)+B+C=2B+C=0-(-B)+B+C = 2B+C = 0−(−B)+B+C=2B+C=0.C=1−AC=1-AC=1−A.2B+1−A=02B + 1-A = 02B+1−A=0.2B+1+B=02B + 1 + B = 02B+1+B=0.3B=−13B = -13B=−1B=−13B = -\frac{1}{3}B=−31A=13A = \frac{1}{3}A=31C=1−13=23C = 1-\frac{1}{3} = \frac{2}{3}C=1−31=32したがって、1x3+1=1/3x+1+−13x+23x2−x+1=13(1x+1+−x+2x2−x+1)\frac{1}{x^3+1} = \frac{1/3}{x+1} + \frac{-\frac{1}{3}x + \frac{2}{3}}{x^2-x+1} = \frac{1}{3} \left( \frac{1}{x+1} + \frac{-x+2}{x^2-x+1} \right)x3+11=x+11/3+x2−x+1−31x+32=31(x+11+x2−x+1−x+2)∫1x3+1dx=13∫(1x+1+−x+2x2−x+1)dx\int \frac{1}{x^3+1} dx = \frac{1}{3} \int \left( \frac{1}{x+1} + \frac{-x+2}{x^2-x+1} \right) dx∫x3+11dx=31∫(x+11+x2−x+1−x+2)dx−x+2x2−x+1=−12(2x−1)+32x2−x+1=−122x−1x2−x+1+321x2−x+1\frac{-x+2}{x^2-x+1} = \frac{-\frac{1}{2}(2x-1) + \frac{3}{2}}{x^2-x+1} = -\frac{1}{2} \frac{2x-1}{x^2-x+1} + \frac{3}{2} \frac{1}{x^2-x+1}x2−x+1−x+2=x2−x+1−21(2x−1)+23=−21x2−x+12x−1+23x2−x+11x2−x+1=(x−12)2+34x^2-x+1 = (x-\frac{1}{2})^2 + \frac{3}{4}x2−x+1=(x−21)2+43∫1x2−x+1dx=∫1(x−12)2+34dx=134arctan(x−1234)=23arctan(2x−13)\int \frac{1}{x^2-x+1} dx = \int \frac{1}{(x-\frac{1}{2})^2 + \frac{3}{4}} dx = \frac{1}{\sqrt{\frac{3}{4}}} \arctan \left( \frac{x-\frac{1}{2}}{\sqrt{\frac{3}{4}}} \right) = \frac{2}{\sqrt{3}} \arctan \left( \frac{2x-1}{\sqrt{3}} \right)∫x2−x+11dx=∫(x−21)2+431dx=431arctan(43x−21)=32arctan(32x−1)よって、∫1x3+1dx=13[ln∣x+1∣−12ln∣x2−x+1∣+3223arctan(2x−13)]+C\int \frac{1}{x^3+1} dx = \frac{1}{3} \left[ \ln|x+1| - \frac{1}{2} \ln|x^2-x+1| + \frac{3}{2} \frac{2}{\sqrt{3}} \arctan \left( \frac{2x-1}{\sqrt{3}} \right) \right] + C∫x3+11dx=31[ln∣x+1∣−21ln∣x2−x+1∣+2332arctan(32x−1)]+C=13ln∣x+1∣−16ln∣x2−x+1∣+13arctan(2x−13)+C= \frac{1}{3} \ln|x+1| - \frac{1}{6} \ln|x^2-x+1| + \frac{1}{\sqrt{3}} \arctan \left( \frac{2x-1}{\sqrt{3}} \right) + C=31ln∣x+1∣−61ln∣x2−x+1∣+31arctan(32x−1)+C3. 最終的な答え13ln∣x+1∣−16ln∣x2−x+1∣+13arctan(2x−13)+C\frac{1}{3} \ln|x+1| - \frac{1}{6} \ln|x^2-x+1| + \frac{1}{\sqrt{3}} \arctan \left( \frac{2x-1}{\sqrt{3}} \right) + C31ln∣x+1∣−61ln∣x2−x+1∣+31arctan(32x−1)+C