関数 $f(x) = x^2 - 5x + 4$ について、$x = -1$ における微分係数 $f'(-1)$ を、微分係数の定義に従って求める問題です。

解析学微分係数関数の微分極限
2025/7/26

1. 問題の内容

関数 f(x)=x25x+4f(x) = x^2 - 5x + 4 について、x=1x = -1 における微分係数 f(1)f'(-1) を、微分係数の定義に従って求める問題です。

2. 解き方の手順

微分係数の定義は、
f(a)=limh0f(a+h)f(a)hf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
で与えられます。今回は、a=1a = -1 の場合を考えます。
まず、f(1)f(-1) を計算します。
f(1)=(1)25(1)+4=1+5+4=10f(-1) = (-1)^2 - 5(-1) + 4 = 1 + 5 + 4 = 10
次に、f(1+h)f(-1+h) を計算します。
f(1+h)=(1+h)25(1+h)+4=(12h+h2)+55h+4=h27h+10f(-1+h) = (-1+h)^2 - 5(-1+h) + 4 = (1 - 2h + h^2) + 5 - 5h + 4 = h^2 - 7h + 10
したがって、
f(1)=limh0f(1+h)f(1)h=limh0(h27h+10)10h=limh0h27hh=limh0(h7)=7f'(-1) = \lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h} = \lim_{h \to 0} \frac{(h^2 - 7h + 10) - 10}{h} = \lim_{h \to 0} \frac{h^2 - 7h}{h} = \lim_{h \to 0} (h - 7) = -7

3. 最終的な答え

f(1)=7f'(-1) = -7

「解析学」の関連問題

与えられた関数 $f(x)$ の逆関数 $f^{-1}(x)$ を求め、$y = f^{-1}(x)$ のグラフを描く問題です。具体的には、以下の2つの関数について逆関数を求めます。 (1) $f(x...

逆関数指数関数対数関数分数関数
2025/7/26

3次方程式 $x^3 - 6x + 3 = 0$ の実数解の個数を求めよ。

3次方程式実数解導関数極値増減
2025/7/26

問題は、以下の三角方程式・不等式を$0 \leq x < 2\pi$ の範囲で解くことです。 (ア) $2\sin^2x + \cos x - 1 = 0$ (イ) $\sqrt{2}\cos x -...

三角関数三角方程式三角不等式sincostan
2025/7/26

曲線 $y = x^3 - x$ 上の点 (1, -1) から引かれた接線の方程式とその接点の座標を求める問題です。

微分接線曲線方程式
2025/7/26

曲線 $y = x^2 + 2x + 1$ 上の点 $(1, 0)$ から引かれた接線の方程式と接点の座標を求める問題です。

微分接線二次関数方程式
2025/7/26

曲線 $y = x^3 - 3x^2$ 上の点 $(2, -4)$ における接線の方程式を求める問題です。

微分接線導関数曲線方程式
2025/7/26

曲線 $y = x^2 - x + 1$ 上の点 $(1, 1)$ における接線の方程式を求めます。

微分接線導関数
2025/7/26

曲線 $y = x^3 - x$ 上の点 $(1, 0)$ における接線の方程式を求める問題です。

微分接線導関数関数の微分
2025/7/26

$a$ を定数とするとき、$x$ の値が $a$ から $a+2$ まで変化するときの関数 $f(x) = x^2 + 5x$ の平均変化率を求めよ。

平均変化率二次関数微分
2025/7/26

関数 $f(x) = x^2 - 5$ において、$x$ が -1 から 1 まで変化するときの平均変化率を求めよ。

平均変化率関数微分
2025/7/26