半径5cmの円の2倍の面積を持つ円の半径を求める問題です。ただし、$ \sqrt{2} = 1.41 $として、小数第1位まで求める必要があります。

幾何学面積半径平方根計算
2025/7/27

1. 問題の内容

半径5cmの円の2倍の面積を持つ円の半径を求める問題です。ただし、2=1.41 \sqrt{2} = 1.41 として、小数第1位まで求める必要があります。

2. 解き方の手順

まず、半径5cmの円の面積を計算します。
円の面積は、πr2 \pi r^2 で求められます。ここで、r r は半径です。
半径5cmの円の面積は、
π×52=25π\pi \times 5^2 = 25\pi
この面積の2倍は、2×25π=50π 2 \times 25\pi = 50\pi です。
次に、この面積を持つ円の半径を求めます。
求める半径をRRとすると、
πR2=50π\pi R^2 = 50\pi
R2=50R^2 = 50
R=50=25×2=52R = \sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}
ここで、2=1.41 \sqrt{2} = 1.41 として計算します。
R=5×1.41=7.05R = 5 \times 1.41 = 7.05
小数第1位まで求めると、7.1となります。

3. 最終的な答え

7. 1 cm

「幾何学」の関連問題

(3) 線分ABを直径とする円Oの円周上の点Cにおける接線と直線ABとの交点をDとする。AB=2, $\angle ADC = 30^\circ$のとき、CDの長さを求めよ。ただし、円Oの点Cにおける...

接線三角比代数学整数
2025/7/27

図のように、線分ABを直径とする半円があり、円周上にAC = 5, BC = 12となるように点Cをとります。また、∠Aの二等分線と線分BC、弧BCとの交点をそれぞれD, Eとします。 (i) ABの...

三平方の定理角の二等分線円周角相似直角三角形
2025/7/27

円 $(x-3)^2 + (y-4)^2 = 25$ 上の点 $(6, 8)$ における接線の方程式を求めます。

接線方程式座標
2025/7/27

(3) 図において点Oは三角形ABCの外心である。角xの大きさを求める。 (4) 図において点Mは辺BCの中点、Gは三角形ABCの重心である。AM = 8のとき、線分MGの長さを求める。

外心重心三角形角度中点
2025/7/27

放物線 $y^2 = -16x$ の接線で、傾きが $\frac{1}{2}$ である直線の方程式を求める問題です。

放物線接線方程式グラフ
2025/7/27

四角形ABCDにおいて、$AB < BC$であり、$\angle ABC$の二等分線と辺CDとの交点をEとする。線分BE上に点Fを$AB = BF$となるようにとり、線分EF上に点Gをとる。また、点H...

幾何合同証明二等辺三角形角の二等分線
2025/7/27

四角形ABCDにおいて、$AB < BC$であり、$\angle ABC$の二等分線と辺CDの交点をEとする。$BC > BE$である。線分BE上に点Fを$AB = BF$となるようにとり、線分EF上...

幾何合同三角形角度証明
2025/7/27

半径 $r$, 高さ $h$ の円柱Pがある。円柱Pの底面の半径を3倍、高さを2倍にした円柱Qの体積は、円柱Pの体積の何倍であるかを求める問題。

体積円柱相似計算
2025/7/27

三角形ABCにおいて、$AB = 3$, $AC = 8$, $\angle BAC = 60^\circ$とする。 (1) 線分BCの長さを求める。 (2) $\angle BAC$の二等分線と辺B...

三角形余弦定理角の二等分線面積
2025/7/27

R^3空間内で、与えられた3点を通る平面の方程式を $x, y, z$ の1次式で求める問題です。 (1) 3点 $A(1, 4, 2), B(3, -2, 0), C(2, 1, 3)$ を通る平面...

ベクトル平面の方程式外積空間ベクトル
2025/7/27