底面の半径が3cm、高さが15cmの円柱形の容器に水が満たされている。その容器を45度傾けたとき、容器に残っている水の体積を求める問題。

幾何学体積円柱三次元幾何
2025/7/27

1. 問題の内容

底面の半径が3cm、高さが15cmの円柱形の容器に水が満たされている。その容器を45度傾けたとき、容器に残っている水の体積を求める問題。

2. 解き方の手順

まず、円柱の底面積を計算する。
底面積 = πr2=π×32=9π\pi r^2 = \pi \times 3^2 = 9\pi 平方cm。
次に、傾けたことによって減少した水の体積を考える。傾けることによって、水の体積は半分になる。
円柱の体積は 9π×15=135π9\pi \times 15 = 135\pi 立方cm。
傾けたことによって減少した水の体積は、135π135\pi の半分なので 135π2\frac{135\pi}{2} 立方cm。
残った水の体積は、円柱の体積の半分である。
残った水の体積 = 135π2=67.5π\frac{135\pi}{2} = 67.5\pi 立方cm。
π3.14\pi \fallingdotseq 3.14 とすると、
67.5×3.14=212.0567.5 \times 3.14 = 212.05 立方cm。

3. 最終的な答え

212.05cm3212.05 cm^3
212 立方センチメートル

「幾何学」の関連問題

三角形ABCの辺BC, CA, AB上に点P, Q, Rがあり、P, Q, Rは同一直線上にある。 AR:RB = 1:3, BC:CP = 2:1のとき、CQ:QAを求める問題です。

幾何三角形メネラウスの定理
2025/7/27

点A(0,5)があり、点Aを通りx軸に平行な直線を引く。その直線上に点Bがあり、直線OBの傾きを$a$とする。点Bを通り、傾きが$-a$の直線が、2点C(6,0), D(8,0)を結ぶ線分CD上の点を...

座標平面直線傾き線分不等式
2025/7/27

y軸上の点A(0,5)を通りx軸に平行な直線上にある点Bを考える。直線OBの傾きを$a$とする。点Bを通り傾き$-a$の直線が、2点C(6,0), D(8,0)を結ぶ線分CD上の点を通るときの、$a$...

座標平面直線傾き線分不等式
2025/7/27

三角形OABにおいて、OA=4, OB=5, AB=6とする。また、ベクトルOA = ベクトルa, ベクトルOB = ベクトルbとする。 (1) 内積 ベクトルa・ベクトルbを求めよ。 (2) ベクト...

ベクトル内積三角形余弦定理
2025/7/27

図において、DE // BCのとき、三角形ADEと三角形ABCの面積比を求める問題です。AD = 24, DB = 8, AE = 12, EC = 6 となっています。

相似面積比三角形
2025/7/27

## 1. 問題の内容

三角比角度tansincos鋭角
2025/7/27

$0^\circ \le \theta \le 180^\circ$ のとき、次の等式を満たす$\theta$を求めよ。 (1) $\sin\theta = \frac{1}{2}$ (2) $\co...

三角関数角度sincostan三角比
2025/7/27

底面の半径が3cm、高さが10cmの円柱がある。 (1) この円柱の体積を求めよ。ただし、円周率は$\pi$とする。 (2) この円柱と体積が等しい円錐がある。この円錐の高さが10cmのとき、この円錐...

円柱円錐体積円周率
2025/7/27

$0^\circ \le \theta \le 180^\circ$ とする。$\sin \theta = \frac{1}{3}$ のとき、$\cos \theta$ と $\tan \theta$...

三角関数三角比sincostan角度
2025/7/27

問題1:図のような三角形ABCにおいて、以下のものを求めます。 (1) $\sin \theta$, $\cos \theta$, $\tan \theta$ の値 (2) 線分AD, CDの長さ 問...

三角比直角三角形三平方の定理角度
2025/7/27