$x = \sqrt{5} + \sqrt{2}$、 $y = \sqrt{5} - \sqrt{2}$のとき、式$x^2y - xy^2$の値を求めよ。代数学式の計算因数分解平方根の計算2025/7/271. 問題の内容x=5+2x = \sqrt{5} + \sqrt{2}x=5+2、 y=5−2y = \sqrt{5} - \sqrt{2}y=5−2のとき、式x2y−xy2x^2y - xy^2x2y−xy2の値を求めよ。2. 解き方の手順まず、x2y−xy2x^2y - xy^2x2y−xy2を因数分解します。x2y−xy2=xy(x−y)x^2y - xy^2 = xy(x-y)x2y−xy2=xy(x−y)次に、xxxとyyyの値を代入して、xyxyxyとx−yx-yx−yの値を計算します。xy=(5+2)(5−2)=(5)2−(2)2=5−2=3xy = (\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2}) = (\sqrt{5})^2 - (\sqrt{2})^2 = 5 - 2 = 3xy=(5+2)(5−2)=(5)2−(2)2=5−2=3x−y=(5+2)−(5−2)=5+2−5+2=22x-y = (\sqrt{5} + \sqrt{2}) - (\sqrt{5} - \sqrt{2}) = \sqrt{5} + \sqrt{2} - \sqrt{5} + \sqrt{2} = 2\sqrt{2}x−y=(5+2)−(5−2)=5+2−5+2=22最後に、xy(x−y)xy(x-y)xy(x−y)にそれぞれの値を代入して計算します。xy(x−y)=3⋅22=62xy(x-y) = 3 \cdot 2\sqrt{2} = 6\sqrt{2}xy(x−y)=3⋅22=623. 最終的な答え626\sqrt{2}62