点Aから点Bまでの距離が8、点Bから点Cまでの距離が5であるとき、点Aから点Cまでの距離としてあり得ないものを選択肢から選ぶ問題です。三角形の成立条件を利用します。

幾何学三角形距離三角形の成立条件不等式
2025/7/27

1. 問題の内容

点Aから点Bまでの距離が8、点Bから点Cまでの距離が5であるとき、点Aから点Cまでの距離としてあり得ないものを選択肢から選ぶ問題です。三角形の成立条件を利用します。

2. 解き方の手順

三角形の成立条件とは、三角形の任意の2辺の長さの和が、残りの1辺の長さよりも大きくなければならないというものです。つまり、三角形ABCにおいて、以下の3つの不等式が成立する必要があります。
AB+BC>ACAB + BC > AC
BC+AC>ABBC + AC > AB
AC+AB>BCAC + AB > BC
問題文より、AB=8AB = 8BC=5BC = 5 であることがわかっています。
上記の不等式に代入して、ACAC が満たすべき条件を求めます。

1. $8 + 5 > AC$ より、$13 > AC$

2. $5 + AC > 8$ より、$AC > 3$

3. $AC + 8 > 5$ より、$AC > -3$。これは常に成り立つ。

したがって、3<AC<133 < AC < 13 である必要があります。
選択肢を見ると、

1. $AC = 13$ は、$3 < AC < 13$ を満たさない。

2. $AC = 10$ は、$3 < AC < 13$ を満たす。

3. $AC = 5$ は、$3 < AC < 13$ を満たす。

したがって、AC=13AC=13 はありえない。

3. 最終的な答え

1 AC = 13

「幾何学」の関連問題

座標平面上に円C: $(x-a)^2 + y^2 = 9$ と直線l: $y = \frac{4}{3}x$ がある。ただし、$a$ は実数で、$a>0$ である。 (1) 円Cと直線lが接するときの...

直線接する点と直線の距離座標平面
2025/7/27

(3) 線分ABを直径とする円Oの円周上の点Cにおける接線と直線ABとの交点をDとする。AB=2, $\angle ADC = 30^\circ$のとき、CDの長さを求めよ。ただし、円Oの点Cにおける...

接線三角比代数学整数
2025/7/27

図のように、線分ABを直径とする半円があり、円周上にAC = 5, BC = 12となるように点Cをとります。また、∠Aの二等分線と線分BC、弧BCとの交点をそれぞれD, Eとします。 (i) ABの...

三平方の定理角の二等分線円周角相似直角三角形
2025/7/27

円 $(x-3)^2 + (y-4)^2 = 25$ 上の点 $(6, 8)$ における接線の方程式を求めます。

接線方程式座標
2025/7/27

(3) 図において点Oは三角形ABCの外心である。角xの大きさを求める。 (4) 図において点Mは辺BCの中点、Gは三角形ABCの重心である。AM = 8のとき、線分MGの長さを求める。

外心重心三角形角度中点
2025/7/27

放物線 $y^2 = -16x$ の接線で、傾きが $\frac{1}{2}$ である直線の方程式を求める問題です。

放物線接線方程式グラフ
2025/7/27

四角形ABCDにおいて、$AB < BC$であり、$\angle ABC$の二等分線と辺CDとの交点をEとする。線分BE上に点Fを$AB = BF$となるようにとり、線分EF上に点Gをとる。また、点H...

幾何合同証明二等辺三角形角の二等分線
2025/7/27

四角形ABCDにおいて、$AB < BC$であり、$\angle ABC$の二等分線と辺CDの交点をEとする。$BC > BE$である。線分BE上に点Fを$AB = BF$となるようにとり、線分EF上...

幾何合同三角形角度証明
2025/7/27

半径 $r$, 高さ $h$ の円柱Pがある。円柱Pの底面の半径を3倍、高さを2倍にした円柱Qの体積は、円柱Pの体積の何倍であるかを求める問題。

体積円柱相似計算
2025/7/27

三角形ABCにおいて、$AB = 3$, $AC = 8$, $\angle BAC = 60^\circ$とする。 (1) 線分BCの長さを求める。 (2) $\angle BAC$の二等分線と辺B...

三角形余弦定理角の二等分線面積
2025/7/27