三角形ABCにおいて、$AB = x$, $BC = 6$, $CA = 3$であるとき、$\angle B$と$\angle C$の大小関係を求める問題です。ただし、$x$の値が与えられていないため、$x$の範囲を考慮する必要があります。

幾何学三角形辺と角の大小関係三角形の成立条件
2025/7/27

1. 問題の内容

三角形ABCにおいて、AB=xAB = x, BC=6BC = 6, CA=3CA = 3であるとき、B\angle BC\angle Cの大小関係を求める問題です。ただし、xxの値が与えられていないため、xxの範囲を考慮する必要があります。

2. 解き方の手順

三角形の成立条件より、以下の不等式が成立します。
\begin{align*} \label{eq:1} x + 6 &> 3 \\ x + 3 &> 6 \\ 6 + 3 &> x\end{align*}
これらの不等式を解くと、
\begin{align*} x &> -3 \\ x &> 3 \\ 9 &> x \end{align*}
となります。よって、3<x<93 < x < 9です。
角の大小関係は、対辺の大小関係と一致します。
B\angle Bの対辺はCA=3CA = 3であり、C\angle Cの対辺はAB=xAB = xです。
したがって、x>3x > 3なので、AB>CAAB > CAであり、C>B\angle C > \angle Bとなります。

3. 最終的な答え

B<C\angle B < \angle C

「幾何学」の関連問題

正六角錐O-ABCDEFにおいて、正六角形ABCDEFの一辺の長さが6cmであり、線分OHの長さが9cmである。 (1) 辺OAの長さを求めよ。 (2) 正六角錐O-ABCDEFの体積を求めよ。

空間図形正六角錐体積三平方の定理
2025/7/27

aは正の実数とする。 円C:$(x-a)^2 + y^2 = 9$が直線$l$:$y = \frac{4}{3}x$と接している。 (1) aの値を求める。 (2) 円$C_1$はCと異なる円で、中心...

接線距離代数
2025/7/27

座標平面上に円C: $(x-a)^2 + y^2 = 9$ と直線l: $y = \frac{4}{3}x$ がある。ただし、$a$ は実数で、$a>0$ である。 (1) 円Cと直線lが接するときの...

直線接する点と直線の距離座標平面
2025/7/27

(3) 線分ABを直径とする円Oの円周上の点Cにおける接線と直線ABとの交点をDとする。AB=2, $\angle ADC = 30^\circ$のとき、CDの長さを求めよ。ただし、円Oの点Cにおける...

接線三角比代数学整数
2025/7/27

図のように、線分ABを直径とする半円があり、円周上にAC = 5, BC = 12となるように点Cをとります。また、∠Aの二等分線と線分BC、弧BCとの交点をそれぞれD, Eとします。 (i) ABの...

三平方の定理角の二等分線円周角相似直角三角形
2025/7/27

円 $(x-3)^2 + (y-4)^2 = 25$ 上の点 $(6, 8)$ における接線の方程式を求めます。

接線方程式座標
2025/7/27

(3) 図において点Oは三角形ABCの外心である。角xの大きさを求める。 (4) 図において点Mは辺BCの中点、Gは三角形ABCの重心である。AM = 8のとき、線分MGの長さを求める。

外心重心三角形角度中点
2025/7/27

放物線 $y^2 = -16x$ の接線で、傾きが $\frac{1}{2}$ である直線の方程式を求める問題です。

放物線接線方程式グラフ
2025/7/27

四角形ABCDにおいて、$AB < BC$であり、$\angle ABC$の二等分線と辺CDとの交点をEとする。線分BE上に点Fを$AB = BF$となるようにとり、線分EF上に点Gをとる。また、点H...

幾何合同証明二等辺三角形角の二等分線
2025/7/27

四角形ABCDにおいて、$AB < BC$であり、$\angle ABC$の二等分線と辺CDの交点をEとする。$BC > BE$である。線分BE上に点Fを$AB = BF$となるようにとり、線分EF上...

幾何合同三角形角度証明
2025/7/27