(1) cos θ \cos \theta cos θ について △ O M A \triangle OMA △ OM A を考える。 O M = A M = 3 2 a OM = AM = \frac{\sqrt{3}}{2} a OM = A M = 2 3 a である。また、 O A = a OA = a O A = a である。余弦定理より、 O A 2 = O M 2 + A M 2 − 2 O M ⋅ A M cos θ OA^2 = OM^2 + AM^2 - 2OM \cdot AM \cos \theta O A 2 = O M 2 + A M 2 − 2 OM ⋅ A M cos θ a 2 = ( 3 2 a ) 2 + ( 3 2 a ) 2 − 2 ( 3 2 a ) ( 3 2 a ) cos θ a^2 = (\frac{\sqrt{3}}{2} a)^2 + (\frac{\sqrt{3}}{2} a)^2 - 2 (\frac{\sqrt{3}}{2} a) (\frac{\sqrt{3}}{2} a) \cos \theta a 2 = ( 2 3 a ) 2 + ( 2 3 a ) 2 − 2 ( 2 3 a ) ( 2 3 a ) cos θ a 2 = 3 4 a 2 + 3 4 a 2 − 2 3 4 a 2 cos θ a^2 = \frac{3}{4} a^2 + \frac{3}{4} a^2 - 2 \frac{3}{4} a^2 \cos \theta a 2 = 4 3 a 2 + 4 3 a 2 − 2 4 3 a 2 cos θ a 2 = 3 2 a 2 − 3 2 a 2 cos θ a^2 = \frac{3}{2} a^2 - \frac{3}{2} a^2 \cos \theta a 2 = 2 3 a 2 − 2 3 a 2 cos θ 3 2 a 2 cos θ = 1 2 a 2 \frac{3}{2} a^2 \cos \theta = \frac{1}{2} a^2 2 3 a 2 cos θ = 2 1 a 2 cos θ = 1 3 \cos \theta = \frac{1}{3} cos θ = 3 1
(2) OH の長さについて
H は △ A B C \triangle ABC △ A BC の重心である。したがって、 A H = 2 3 A M = 2 3 3 2 a = 3 3 a AH = \frac{2}{3} AM = \frac{2}{3} \frac{\sqrt{3}}{2} a = \frac{\sqrt{3}}{3} a A H = 3 2 A M = 3 2 2 3 a = 3 3 a である。 △ O H A \triangle OHA △ O H A は直角三角形なので、 O H 2 + A H 2 = O A 2 OH^2 + AH^2 = OA^2 O H 2 + A H 2 = O A 2 より、 O H 2 = O A 2 − A H 2 = a 2 − ( 3 3 a ) 2 = a 2 − 3 9 a 2 = a 2 − 1 3 a 2 = 2 3 a 2 OH^2 = OA^2 - AH^2 = a^2 - (\frac{\sqrt{3}}{3} a)^2 = a^2 - \frac{3}{9} a^2 = a^2 - \frac{1}{3} a^2 = \frac{2}{3} a^2 O H 2 = O A 2 − A H 2 = a 2 − ( 3 3 a ) 2 = a 2 − 9 3 a 2 = a 2 − 3 1 a 2 = 3 2 a 2 O H = 2 3 a = 6 3 a OH = \sqrt{\frac{2}{3}} a = \frac{\sqrt{6}}{3} a O H = 3 2 a = 3 6 a
(3) △ A B C \triangle ABC △ A BC の面積 S について 正三角形の面積の公式より、 S = 3 4 a 2 S = \frac{\sqrt{3}}{4} a^2 S = 4 3 a 2
(4) 正四面体の体積 V について
V = 1 3 S ⋅ O H = 1 3 ⋅ 3 4 a 2 ⋅ 6 3 a = 18 36 a 3 = 3 2 36 a 3 = 2 12 a 3 V = \frac{1}{3} S \cdot OH = \frac{1}{3} \cdot \frac{\sqrt{3}}{4} a^2 \cdot \frac{\sqrt{6}}{3} a = \frac{\sqrt{18}}{36} a^3 = \frac{3\sqrt{2}}{36} a^3 = \frac{\sqrt{2}}{12} a^3 V = 3 1 S ⋅ O H = 3 1 ⋅ 4 3 a 2 ⋅ 3 6 a = 36 18 a 3 = 36 3 2 a 3 = 12 2 a 3
(5) 正四面体の内接球の半径 r について
V = 1 3 r ( S × 4 ) V = \frac{1}{3} r (S \times 4) V = 3 1 r ( S × 4 ) 2 12 a 3 = 4 3 r ( 3 4 a 2 ) \frac{\sqrt{2}}{12} a^3 = \frac{4}{3} r (\frac{\sqrt{3}}{4} a^2) 12 2 a 3 = 3 4 r ( 4 3 a 2 ) 2 12 a 3 = 3 3 r a 2 \frac{\sqrt{2}}{12} a^3 = \frac{\sqrt{3}}{3} r a^2 12 2 a 3 = 3 3 r a 2 r = 2 12 a 3 ⋅ 3 3 a 2 = 2 4 3 a = 6 12 a r = \frac{\sqrt{2}}{12} a^3 \cdot \frac{3}{\sqrt{3} a^2} = \frac{\sqrt{2}}{4\sqrt{3}} a = \frac{\sqrt{6}}{12} a r = 12 2 a 3 ⋅ 3 a 2 3 = 4 3 2 a = 12 6 a
(6) 正四面体の外接球の半径 R について
正四面体OABCにおいて、重心GはOHをOG:GH=3:1に内分する。外接球の中心をPとすると、PはOH上にある。OP=AP=Rである。
HP = |OH - OP| = |OH - R|
R 2 = ( 3 3 a ) 2 + ( O H − R ) 2 = ( 3 3 a ) 2 + ( 6 3 a − R ) 2 R^2 = (\frac{\sqrt{3}}{3}a)^2 + (OH-R)^2 = (\frac{\sqrt{3}}{3}a)^2 + (\frac{\sqrt{6}}{3}a-R)^2 R 2 = ( 3 3 a ) 2 + ( O H − R ) 2 = ( 3 3 a ) 2 + ( 3 6 a − R ) 2 R 2 = a 2 3 + 2 a 2 3 − 2 6 3 a R + R 2 R^2 = \frac{a^2}{3} + \frac{2a^2}{3} - 2\frac{\sqrt{6}}{3} aR + R^2 R 2 = 3 a 2 + 3 2 a 2 − 2 3 6 a R + R 2 0 = a 2 − 2 6 3 a R 0 = a^2 - 2\frac{\sqrt{6}}{3} aR 0 = a 2 − 2 3 6 a R 2 6 3 a R = a 2 2\frac{\sqrt{6}}{3} aR = a^2 2 3 6 a R = a 2 R = 3 2 6 a = 3 6 12 a = 6 4 a R = \frac{3}{2\sqrt{6}} a = \frac{3\sqrt{6}}{12} a = \frac{\sqrt{6}}{4} a R = 2 6 3 a = 12 3 6 a = 4 6 a