次の不定積分を求めよ。 (1) $\int \frac{1}{\cos x} dx$ (2) $\int \frac{\sin x - \sin^3 x}{1 + \cos x} dx$解析学積分不定積分三角関数置換積分2025/7/271. 問題の内容次の不定積分を求めよ。(1) ∫1cosxdx\int \frac{1}{\cos x} dx∫cosx1dx(2) ∫sinx−sin3x1+cosxdx\int \frac{\sin x - \sin^3 x}{1 + \cos x} dx∫1+cosxsinx−sin3xdx2. 解き方の手順(1)∫1cosxdx=∫cosxcos2xdx=∫cosx1−sin2xdx\int \frac{1}{\cos x} dx = \int \frac{\cos x}{\cos^2 x} dx = \int \frac{\cos x}{1 - \sin^2 x} dx∫cosx1dx=∫cos2xcosxdx=∫1−sin2xcosxdxここで、t=sinxt = \sin xt=sinx とおくと、dt=cosxdxdt = \cos x dxdt=cosxdx となるので、∫11−t2dt=∫1(1−t)(1+t)dt=12∫(11−t+11+t)dt\int \frac{1}{1 - t^2} dt = \int \frac{1}{(1 - t)(1 + t)} dt = \frac{1}{2} \int (\frac{1}{1 - t} + \frac{1}{1 + t}) dt∫1−t21dt=∫(1−t)(1+t)1dt=21∫(1−t1+1+t1)dt=12(−log∣1−t∣+log∣1+t∣)+C=12log∣1+t1−t∣+C= \frac{1}{2} (-\log|1 - t| + \log|1 + t|) + C = \frac{1}{2} \log|\frac{1 + t}{1 - t}| + C=21(−log∣1−t∣+log∣1+t∣)+C=21log∣1−t1+t∣+C=12log∣1+sinx1−sinx∣+C=12log∣(1+sinx)21−sin2x∣+C= \frac{1}{2} \log|\frac{1 + \sin x}{1 - \sin x}| + C = \frac{1}{2} \log|\frac{(1 + \sin x)^2}{1 - \sin^2 x}| + C=21log∣1−sinx1+sinx∣+C=21log∣1−sin2x(1+sinx)2∣+C=12log∣(1+sinx)2cos2x∣+C=log∣1+sinxcosx∣+C= \frac{1}{2} \log|\frac{(1 + \sin x)^2}{\cos^2 x}| + C = \log|\frac{1 + \sin x}{\cos x}| + C=21log∣cos2x(1+sinx)2∣+C=log∣cosx1+sinx∣+C=log∣secx+tanx∣+C= \log|\sec x + \tan x| + C=log∣secx+tanx∣+C(2)∫sinx−sin3x1+cosxdx=∫sinx(1−sin2x)1+cosxdx=∫sinxcos2x1+cosxdx\int \frac{\sin x - \sin^3 x}{1 + \cos x} dx = \int \frac{\sin x(1 - \sin^2 x)}{1 + \cos x} dx = \int \frac{\sin x \cos^2 x}{1 + \cos x} dx∫1+cosxsinx−sin3xdx=∫1+cosxsinx(1−sin2x)dx=∫1+cosxsinxcos2xdxここで、t=cosxt = \cos xt=cosx とおくと、dt=−sinxdxdt = -\sin x dxdt=−sinxdx となるので、∫−t21+tdt=−∫t2t+1dt=−∫t2−1+1t+1dt=−∫(t−1+1t+1)dt\int \frac{-t^2}{1 + t} dt = -\int \frac{t^2}{t + 1} dt = -\int \frac{t^2 - 1 + 1}{t + 1} dt = -\int (t - 1 + \frac{1}{t + 1}) dt∫1+t−t2dt=−∫t+1t2dt=−∫t+1t2−1+1dt=−∫(t−1+t+11)dt=−t22+t−log∣t+1∣+C=−cos2x2+cosx−log∣cosx+1∣+C= -\frac{t^2}{2} + t - \log|t + 1| + C = -\frac{\cos^2 x}{2} + \cos x - \log|\cos x + 1| + C=−2t2+t−log∣t+1∣+C=−2cos2x+cosx−log∣cosx+1∣+C3. 最終的な答え(1) log∣secx+tanx∣+C\log|\sec x + \tan x| + Clog∣secx+tanx∣+C(2) −cos2x2+cosx−log∣cosx+1∣+C-\frac{\cos^2 x}{2} + \cos x - \log|\cos x + 1| + C−2cos2x+cosx−log∣cosx+1∣+C