次の関数を偏微分する問題です。 (1) $z = \sin(x^2 + y^2)$ (3) $z = e^{xy} \tan^{-1} y$解析学偏微分多変数関数合成関数の微分積の微分2025/7/271. 問題の内容次の関数を偏微分する問題です。(1) z=sin(x2+y2)z = \sin(x^2 + y^2)z=sin(x2+y2)(3) z=exytan−1yz = e^{xy} \tan^{-1} yz=exytan−1y2. 解き方の手順(1) z=sin(x2+y2)z = \sin(x^2 + y^2)z=sin(x2+y2)まず、xxxで偏微分します。合成関数の微分を使います。∂z∂x=cos(x2+y2)⋅∂∂x(x2+y2)=cos(x2+y2)⋅2x\frac{\partial z}{\partial x} = \cos(x^2 + y^2) \cdot \frac{\partial}{\partial x}(x^2 + y^2) = \cos(x^2 + y^2) \cdot 2x∂x∂z=cos(x2+y2)⋅∂x∂(x2+y2)=cos(x2+y2)⋅2x∂z∂x=2xcos(x2+y2)\frac{\partial z}{\partial x} = 2x \cos(x^2 + y^2)∂x∂z=2xcos(x2+y2)次に、yyyで偏微分します。∂z∂y=cos(x2+y2)⋅∂∂y(x2+y2)=cos(x2+y2)⋅2y\frac{\partial z}{\partial y} = \cos(x^2 + y^2) \cdot \frac{\partial}{\partial y}(x^2 + y^2) = \cos(x^2 + y^2) \cdot 2y∂y∂z=cos(x2+y2)⋅∂y∂(x2+y2)=cos(x2+y2)⋅2y∂z∂y=2ycos(x2+y2)\frac{\partial z}{\partial y} = 2y \cos(x^2 + y^2)∂y∂z=2ycos(x2+y2)(3) z=exytan−1yz = e^{xy} \tan^{-1} yz=exytan−1yまず、xxxで偏微分します。∂z∂x=exy⋅∂∂x(xy)⋅tan−1y=exy⋅y⋅tan−1y\frac{\partial z}{\partial x} = e^{xy} \cdot \frac{\partial}{\partial x}(xy) \cdot \tan^{-1} y = e^{xy} \cdot y \cdot \tan^{-1} y∂x∂z=exy⋅∂x∂(xy)⋅tan−1y=exy⋅y⋅tan−1y∂z∂x=yexytan−1y\frac{\partial z}{\partial x} = y e^{xy} \tan^{-1} y∂x∂z=yexytan−1y次に、yyyで偏微分します。積の微分を使います。∂z∂y=∂∂y(exy)⋅tan−1y+exy⋅∂∂y(tan−1y)\frac{\partial z}{\partial y} = \frac{\partial}{\partial y}(e^{xy}) \cdot \tan^{-1} y + e^{xy} \cdot \frac{\partial}{\partial y}(\tan^{-1} y)∂y∂z=∂y∂(exy)⋅tan−1y+exy⋅∂y∂(tan−1y)∂z∂y=exy⋅x⋅tan−1y+exy⋅11+y2\frac{\partial z}{\partial y} = e^{xy} \cdot x \cdot \tan^{-1} y + e^{xy} \cdot \frac{1}{1+y^2}∂y∂z=exy⋅x⋅tan−1y+exy⋅1+y21∂z∂y=xexytan−1y+exy1+y2\frac{\partial z}{\partial y} = x e^{xy} \tan^{-1} y + \frac{e^{xy}}{1+y^2}∂y∂z=xexytan−1y+1+y2exy3. 最終的な答え(1)∂z∂x=2xcos(x2+y2)\frac{\partial z}{\partial x} = 2x \cos(x^2 + y^2)∂x∂z=2xcos(x2+y2)∂z∂y=2ycos(x2+y2)\frac{\partial z}{\partial y} = 2y \cos(x^2 + y^2)∂y∂z=2ycos(x2+y2)(3)∂z∂x=yexytan−1y\frac{\partial z}{\partial x} = y e^{xy} \tan^{-1} y∂x∂z=yexytan−1y∂z∂y=xexytan−1y+exy1+y2\frac{\partial z}{\partial y} = x e^{xy} \tan^{-1} y + \frac{e^{xy}}{1+y^2}∂y∂z=xexytan−1y+1+y2exy