(1)
AH:CH = 3:2より、AH = 3x, CH = 2xとおける。AC = AH + CH = 5x。
cosA = AH/AB = 3x/AB。三角形ABCの外接円の半径Rは5なので、正弦定理より、BC/sinA = 2R = 10。
ここで、sinA = BH/AB。また、BC = a, AC = b, AB = cとおくと、余弦定理より、 a 2 = b 2 + c 2 − 2 b c c o s A a^2 = b^2 + c^2 - 2bc cosA a 2 = b 2 + c 2 − 2 b ccos A 。 B C 2 = A C 2 + A B 2 − 2 ∗ A C ∗ A B ∗ c o s A BC^2 = AC^2 + AB^2 - 2 * AC * AB * cosA B C 2 = A C 2 + A B 2 − 2 ∗ A C ∗ A B ∗ cos A 。 B C 2 = ( 5 x ) 2 + A B 2 − 2 ∗ 5 x ∗ A B ∗ ( 3 x / A B ) BC^2 = (5x)^2 + AB^2 - 2 * 5x * AB * (3x/AB) B C 2 = ( 5 x ) 2 + A B 2 − 2 ∗ 5 x ∗ A B ∗ ( 3 x / A B ) B C 2 = 25 x 2 + A B 2 − 30 x 2 = A B 2 − 5 x 2 BC^2 = 25x^2 + AB^2 - 30x^2 = AB^2 - 5x^2 B C 2 = 25 x 2 + A B 2 − 30 x 2 = A B 2 − 5 x 2 B C / s i n A = 10 BC/sinA = 10 BC / s in A = 10 より、 B C = 10 s i n A BC = 10sinA BC = 10 s in A 。 B C = 10 B H / A B BC = 10BH/AB BC = 10 B H / A B 。
ここで、AC = ABなので、AC = 5x = AB。
すると、 c o s A = 3 x / A B = 3 x / ( 5 x ) = 3 / 5 cosA = 3x/AB = 3x/(5x) = 3/5 cos A = 3 x / A B = 3 x / ( 5 x ) = 3/5 。 B C 2 = ( 5 x ) 2 − 5 x 2 = 20 x 2 BC^2 = (5x)^2 - 5x^2 = 20x^2 B C 2 = ( 5 x ) 2 − 5 x 2 = 20 x 2 B C = 20 x 2 = 2 5 x BC = \sqrt{20x^2} = 2\sqrt{5}x BC = 20 x 2 = 2 5 x B C / s i n A = 10 BC/sinA = 10 BC / s in A = 10 より、 B C = 10 s i n A BC = 10sinA BC = 10 s in A 。 B C = 10 ∗ B H / A B BC = 10 * BH/AB BC = 10 ∗ B H / A B 。 B H = A B 2 − A H 2 = ( 5 x ) 2 − ( 3 x ) 2 = 16 x 2 = 4 x BH = \sqrt{AB^2 - AH^2} = \sqrt{(5x)^2 - (3x)^2} = \sqrt{16x^2} = 4x B H = A B 2 − A H 2 = ( 5 x ) 2 − ( 3 x ) 2 = 16 x 2 = 4 x B C = 10 ∗ 4 x / ( 5 x ) = 8 BC = 10 * 4x/(5x) = 8 BC = 10 ∗ 4 x / ( 5 x ) = 8 。
(2)
B H = 4 x BH = 4x B H = 4 x 。 x = B C / ( 2 5 ) = 8 / ( 2 5 ) = 4 / 5 x = BC/(2\sqrt{5}) = 8/(2\sqrt{5}) = 4/\sqrt{5} x = BC / ( 2 5 ) = 8/ ( 2 5 ) = 4/ 5 。 B H = 4 x = 4 ∗ ( 4 / 5 ) = 16 / 5 = 16 5 / 5 BH = 4x = 4*(4/\sqrt{5}) = 16/\sqrt{5} = 16\sqrt{5}/5 B H = 4 x = 4 ∗ ( 4/ 5 ) = 16/ 5 = 16 5 /5 。 三角形ABCの面積 = 1/2 * AC * BH = 1/2 * 5x * 4x = 10x^2 = 10 * (4/ 5 \sqrt{5} 5 )^2 = 10 * 16/5 = 32。
(3)
OKはACの中点Kを通る。AK = AC/2 = 5x/2 = (5/2)(4/ 5 \sqrt{5} 5 ) = 2 5 2\sqrt{5} 2 5 。 三角形AOKは直角三角形なので、 O K = A O 2 − A K 2 = 5 2 − ( 2 5 ) 2 = 25 − 20 = 5 OK = \sqrt{AO^2 - AK^2} = \sqrt{5^2 - (2\sqrt{5})^2} = \sqrt{25 - 20} = \sqrt{5} O K = A O 2 − A K 2 = 5 2 − ( 2 5 ) 2 = 25 − 20 = 5 。 OからACに下ろした垂線の足KはACの中点なので、AC=8よりKC = 4である。したがってAH=6でHC=