$\sin\theta + \cos\theta = \frac{1}{3}$ のとき、以下の式の値を求める。 (1) $\sin\theta \cos\theta$ (2) $\sin^3\theta + \cos^3\theta$代数学三角関数恒等式因数分解式の計算2025/7/281. 問題の内容sinθ+cosθ=13\sin\theta + \cos\theta = \frac{1}{3}sinθ+cosθ=31 のとき、以下の式の値を求める。(1) sinθcosθ\sin\theta \cos\thetasinθcosθ(2) sin3θ+cos3θ\sin^3\theta + \cos^3\thetasin3θ+cos3θ2. 解き方の手順(1) sinθ+cosθ=13\sin\theta + \cos\theta = \frac{1}{3}sinθ+cosθ=31 の両辺を2乗する。(sinθ+cosθ)2=(13)2(\sin\theta + \cos\theta)^2 = (\frac{1}{3})^2(sinθ+cosθ)2=(31)2sin2θ+2sinθcosθ+cos2θ=19\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{9}sin2θ+2sinθcosθ+cos2θ=91sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1sin2θ+cos2θ=1 より1+2sinθcosθ=191 + 2\sin\theta\cos\theta = \frac{1}{9}1+2sinθcosθ=912sinθcosθ=19−12\sin\theta\cos\theta = \frac{1}{9} - 12sinθcosθ=91−12sinθcosθ=−892\sin\theta\cos\theta = -\frac{8}{9}2sinθcosθ=−98sinθcosθ=−49\sin\theta\cos\theta = -\frac{4}{9}sinθcosθ=−94(2) sin3θ+cos3θ\sin^3\theta + \cos^3\thetasin3θ+cos3θ を因数分解する。sin3θ+cos3θ=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)\sin^3\theta + \cos^3\theta = (\sin\theta + \cos\theta)(\sin^2\theta - \sin\theta\cos\theta + \cos^2\theta)sin3θ+cos3θ=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)sin3θ+cos3θ=(sinθ+cosθ)(1−sinθcosθ)\sin^3\theta + \cos^3\theta = (\sin\theta + \cos\theta)(1 - \sin\theta\cos\theta)sin3θ+cos3θ=(sinθ+cosθ)(1−sinθcosθ)sinθ+cosθ=13\sin\theta + \cos\theta = \frac{1}{3}sinθ+cosθ=31、sinθcosθ=−49\sin\theta\cos\theta = -\frac{4}{9}sinθcosθ=−94 を代入する。sin3θ+cos3θ=(13)(1−(−49))\sin^3\theta + \cos^3\theta = (\frac{1}{3})(1 - (-\frac{4}{9}))sin3θ+cos3θ=(31)(1−(−94))sin3θ+cos3θ=(13)(1+49)\sin^3\theta + \cos^3\theta = (\frac{1}{3})(1 + \frac{4}{9})sin3θ+cos3θ=(31)(1+94)sin3θ+cos3θ=(13)(99+49)\sin^3\theta + \cos^3\theta = (\frac{1}{3})(\frac{9}{9} + \frac{4}{9})sin3θ+cos3θ=(31)(99+94)sin3θ+cos3θ=(13)(139)\sin^3\theta + \cos^3\theta = (\frac{1}{3})(\frac{13}{9})sin3θ+cos3θ=(31)(913)sin3θ+cos3θ=1327\sin^3\theta + \cos^3\theta = \frac{13}{27}sin3θ+cos3θ=27133. 最終的な答え(1) sinθcosθ=−49\sin\theta \cos\theta = -\frac{4}{9}sinθcosθ=−94(2) sin3θ+cos3θ=1327\sin^3\theta + \cos^3\theta = \frac{13}{27}sin3θ+cos3θ=2713