関数 $y = \frac{2x+1}{x-4}$ の逆関数を求めよ。

代数学逆関数分数関数
2025/7/28

1. 問題の内容

関数 y=2x+1x4y = \frac{2x+1}{x-4} の逆関数を求めよ。

2. 解き方の手順

まず、与えられた関数を y=2x+1x4y = \frac{2x+1}{x-4} とします。
逆関数を求めるには、xxyy を入れ替えて、xx について解きます。
xxyy を入れ替えると、
x=2y+1y4x = \frac{2y+1}{y-4}
となります。
次に、xx について解きます。両辺に (y4)(y-4) を掛けます。
x(y4)=2y+1x(y-4) = 2y+1
xy4x=2y+1xy - 4x = 2y + 1
yy を含む項を左辺に、それ以外の項を右辺に集めます。
xy2y=4x+1xy - 2y = 4x + 1
左辺を yy でくくります。
y(x2)=4x+1y(x-2) = 4x + 1
両辺を (x2)(x-2) で割ります。
y=4x+1x2y = \frac{4x+1}{x-2}

3. 最終的な答え

逆関数は y=4x+1x2y = \frac{4x+1}{x-2} です。

「代数学」の関連問題

問題は $36x^2 - 16y^2$ を因数分解することです。

因数分解二次式多項式
2025/7/28

画像に写っている以下の10個の因数分解の問題を解きます。 (1) $x^2 - 3x - 4$ (2) $x^2 - \frac{5}{3}x - \frac{2}{3}$ (3) $36x^2 - ...

因数分解多項式二次方程式三次方程式
2025/7/28

問題は、次の2つの一次関数のグラフを、それぞれ与えられた座標平面上に描くことです。 (1) $y = x + 2$ (2) $y = -3x - 2$

一次関数グラフ座標平面傾き切片
2025/7/28

2次関数 $y = ax^2 + bx + c$ のグラフが与えられたとき、$a, b, c, b^2 - 4ac, a+b+c, a-b+c$ の正、0、負を判定する。

二次関数グラフ判別式不等式
2025/7/28

与えられた連立一次方程式を解き、$a, b, c$ の値を求める。 連立方程式は以下の通り。 $a + b + 2c = 9$ $a + 2b + c = 11$ $2a + b + c = 8$

連立一次方程式方程式線形代数
2025/7/28

与えられた2次式 $x^2 - \frac{5}{3}x - \frac{2}{3}$ を因数分解してください。

因数分解二次式分数
2025/7/28

放物線 $y = x^2 + 2(2a+1)x + a+1$ が、$x$軸と異なる2点で交わるときの定数 $a$ の値の範囲を求める。

二次関数判別式不等式二次方程式
2025/7/28

与えられた2つの $n$ 次正方行列 $N$ と $U$ の $k$ 乗 $N^k$ と $U^k$ ($k \in \mathbb{N}$) を計算する問題です。 ここで、$N$ と $U$ は以下...

行列行列のべき乗対角行列上三角行列二項係数
2025/7/28

与えられた4つの2次関数を平方完成し、$y = a(x-p)^2 + q$ の形に変形します。 (1) $y = 2x^2 - 16x$ (2) $y = 2x^2 - 4x + 5$ (3) $y ...

二次関数平方完成数式変形
2025/7/28

与えられた行列 $A = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{pmatrix}$ の逆行列を、消去法(掃き出し法)を用い...

線形代数行列逆行列掃き出し法
2025/7/28