次の極限を求める問題です。 $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(2x - \pi)^2}$解析学極限三角関数ロピタルの定理2025/7/281. 問題の内容次の極限を求める問題です。limx→π21−sinx(2x−π)2\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(2x - \pi)^2}limx→2π(2x−π)21−sinx2. 解き方の手順まず、x−π2=tx - \frac{\pi}{2} = tx−2π=t とおくと、x=t+π2x = t + \frac{\pi}{2}x=t+2π となり、x→π2x \to \frac{\pi}{2}x→2π のとき t→0t \to 0t→0 となります。このとき、1−sinx=1−sin(t+π2)=1−cost1 - \sin x = 1 - \sin(t + \frac{\pi}{2}) = 1 - \cos t1−sinx=1−sin(t+2π)=1−cost2x−π=2(t+π2)−π=2t2x - \pi = 2(t + \frac{\pi}{2}) - \pi = 2t2x−π=2(t+2π)−π=2tとなるので、limx→π21−sinx(2x−π)2=limt→01−cost(2t)2=limt→01−cost4t2\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(2x - \pi)^2} = \lim_{t \to 0} \frac{1 - \cos t}{(2t)^2} = \lim_{t \to 0} \frac{1 - \cos t}{4t^2}limx→2π(2x−π)21−sinx=limt→0(2t)21−cost=limt→04t21−costここで、1−cost=2sin2(t2)1 - \cos t = 2\sin^2(\frac{t}{2})1−cost=2sin2(2t) であることを用いると、limt→01−cost4t2=limt→02sin2(t2)4t2=limt→012⋅sin2(t2)t2=12limt→0(sin(t2)t)2\lim_{t \to 0} \frac{1 - \cos t}{4t^2} = \lim_{t \to 0} \frac{2\sin^2(\frac{t}{2})}{4t^2} = \lim_{t \to 0} \frac{1}{2} \cdot \frac{\sin^2(\frac{t}{2})}{t^2} = \frac{1}{2} \lim_{t \to 0} \left(\frac{\sin(\frac{t}{2})}{t}\right)^2limt→04t21−cost=limt→04t22sin2(2t)=limt→021⋅t2sin2(2t)=21limt→0(tsin(2t))2さらに、sin(t2)t=sin(t2)t2⋅12\frac{\sin(\frac{t}{2})}{t} = \frac{\sin(\frac{t}{2})}{\frac{t}{2}} \cdot \frac{1}{2}tsin(2t)=2tsin(2t)⋅21 であるから、12limt→0(sin(t2)t)2=12limt→0(sin(t2)t2⋅12)2=12limt→0(sin(t2)t2)2⋅14\frac{1}{2} \lim_{t \to 0} \left(\frac{\sin(\frac{t}{2})}{t}\right)^2 = \frac{1}{2} \lim_{t \to 0} \left(\frac{\sin(\frac{t}{2})}{\frac{t}{2}} \cdot \frac{1}{2}\right)^2 = \frac{1}{2} \lim_{t \to 0} \left(\frac{\sin(\frac{t}{2})}{\frac{t}{2}}\right)^2 \cdot \frac{1}{4}21limt→0(tsin(2t))2=21limt→0(2tsin(2t)⋅21)2=21limt→0(2tsin(2t))2⋅41limt→0sin(t2)t2=1\lim_{t \to 0} \frac{\sin(\frac{t}{2})}{\frac{t}{2}} = 1limt→02tsin(2t)=1 であるから、12⋅12⋅14=18\frac{1}{2} \cdot 1^2 \cdot \frac{1}{4} = \frac{1}{8}21⋅12⋅41=813. 最終的な答え18\frac{1}{8}81