関数 $f(x) = \frac{(\sqrt{x}-1)^2}{x}$ の導関数を求める。解析学導関数微分関数の微分2025/7/281. 問題の内容関数 f(x)=(x−1)2xf(x) = \frac{(\sqrt{x}-1)^2}{x}f(x)=x(x−1)2 の導関数を求める。2. 解き方の手順まず、f(x)f(x)f(x) を簡単にします。f(x)=(x−1)2x=x−2x+1x=xx−2xx+1x=1−2x+1x=1−2x−12+x−1f(x) = \frac{(\sqrt{x}-1)^2}{x} = \frac{x - 2\sqrt{x} + 1}{x} = \frac{x}{x} - \frac{2\sqrt{x}}{x} + \frac{1}{x} = 1 - \frac{2}{\sqrt{x}} + \frac{1}{x} = 1 - 2x^{-\frac{1}{2}} + x^{-1}f(x)=x(x−1)2=xx−2x+1=xx−x2x+x1=1−x2+x1=1−2x−21+x−1次に、f(x)f(x)f(x) を微分します。f′(x)=ddx(1−2x−12+x−1)f'(x) = \frac{d}{dx}(1 - 2x^{-\frac{1}{2}} + x^{-1})f′(x)=dxd(1−2x−21+x−1)f′(x)=0−2(−12x−32)+(−1)x−2f'(x) = 0 - 2(-\frac{1}{2}x^{-\frac{3}{2}}) + (-1)x^{-2}f′(x)=0−2(−21x−23)+(−1)x−2f′(x)=x−32−x−2=1xx−1x2=1xx−1x2f'(x) = x^{-\frac{3}{2}} - x^{-2} = \frac{1}{x\sqrt{x}} - \frac{1}{x^2} = \frac{1}{x\sqrt{x}} - \frac{1}{x^2}f′(x)=x−23−x−2=xx1−x21=xx1−x21f′(x)=x−xx3=x(x−1)x3f'(x) = \frac{x - \sqrt{x}}{x^3} = \frac{\sqrt{x}(\sqrt{x}-1)}{x^3}f′(x)=x3x−x=x3x(x−1)f′(x)=x−xx3=x(x−1)x3=x−1x5/2f'(x) = \frac{x-\sqrt{x}}{x^3}=\frac{\sqrt{x}(\sqrt{x}-1)}{x^3}=\frac{\sqrt{x}-1}{x^{5/2}}f′(x)=x3x−x=x3x(x−1)=x5/2x−13. 最終的な答えf′(x)=1xx−1x2=x−xx3f'(x) = \frac{1}{x\sqrt{x}} - \frac{1}{x^2} = \frac{x-\sqrt{x}}{x^3}f′(x)=xx1−x21=x3x−xまたはf′(x)=x−1x5/2f'(x)=\frac{\sqrt{x}-1}{x^{5/2}}f′(x)=x5/2x−1