関数 $y = (x-1)(x^2+1)(2x-1)$ を微分せよ。解析学微分積の微分多項式2025/7/281. 問題の内容関数 y=(x−1)(x2+1)(2x−1)y = (x-1)(x^2+1)(2x-1)y=(x−1)(x2+1)(2x−1) を微分せよ。2. 解き方の手順積の微分公式を使う。y=uvwy = uvwy=uvwのとき、y′=u′vw+uv′w+uvw′y' = u'vw + uv'w + uvw'y′=u′vw+uv′w+uvw′となる。ここで、u=x−1u = x-1u=x−1, v=x2+1v = x^2+1v=x2+1, w=2x−1w = 2x-1w=2x−1とおく。まず、それぞれの微分を計算する。u′=ddx(x−1)=1u' = \frac{d}{dx}(x-1) = 1u′=dxd(x−1)=1v′=ddx(x2+1)=2xv' = \frac{d}{dx}(x^2+1) = 2xv′=dxd(x2+1)=2xw′=ddx(2x−1)=2w' = \frac{d}{dx}(2x-1) = 2w′=dxd(2x−1)=2次に、積の微分公式に代入する。y′=u′vw+uv′w+uvw′y' = u'vw + uv'w + uvw'y′=u′vw+uv′w+uvw′y′=(1)(x2+1)(2x−1)+(x−1)(2x)(2x−1)+(x−1)(x2+1)(2)y' = (1)(x^2+1)(2x-1) + (x-1)(2x)(2x-1) + (x-1)(x^2+1)(2)y′=(1)(x2+1)(2x−1)+(x−1)(2x)(2x−1)+(x−1)(x2+1)(2)y′=(x2+1)(2x−1)+2x(x−1)(2x−1)+2(x−1)(x2+1)y' = (x^2+1)(2x-1) + 2x(x-1)(2x-1) + 2(x-1)(x^2+1)y′=(x2+1)(2x−1)+2x(x−1)(2x−1)+2(x−1)(x2+1)y′=(2x3−x2+2x−1)+2x(2x2−3x+1)+2(x3−x2+x−1)y' = (2x^3-x^2+2x-1) + 2x(2x^2-3x+1) + 2(x^3-x^2+x-1)y′=(2x3−x2+2x−1)+2x(2x2−3x+1)+2(x3−x2+x−1)y′=(2x3−x2+2x−1)+(4x3−6x2+2x)+(2x3−2x2+2x−2)y' = (2x^3-x^2+2x-1) + (4x^3-6x^2+2x) + (2x^3-2x^2+2x-2)y′=(2x3−x2+2x−1)+(4x3−6x2+2x)+(2x3−2x2+2x−2)y′=(2x3+4x3+2x3)+(−x2−6x2−2x2)+(2x+2x+2x)+(−1−2)y' = (2x^3 + 4x^3 + 2x^3) + (-x^2 -6x^2 -2x^2) + (2x + 2x + 2x) + (-1-2)y′=(2x3+4x3+2x3)+(−x2−6x2−2x2)+(2x+2x+2x)+(−1−2)y′=8x3−9x2+6x−3y' = 8x^3 - 9x^2 + 6x - 3y′=8x3−9x2+6x−33. 最終的な答えy′=8x3−9x2+6x−3y' = 8x^3 - 9x^2 + 6x - 3y′=8x3−9x2+6x−3