問題は、与えられた等式を変形して、指定された文字について解くことです。具体的には、 (1) $2a + 7 = b$ を $a$ について解く (3) $V = \frac{1}{3} \pi h r^2$ を $h$ について解く

代数学式変形文字について解く方程式公式
2025/7/28

1. 問題の内容

問題は、与えられた等式を変形して、指定された文字について解くことです。具体的には、
(1) 2a+7=b2a + 7 = baa について解く
(3) V=13πhr2V = \frac{1}{3} \pi h r^2hh について解く

2. 解き方の手順

(1) 2a+7=b2a + 7 = baa について解く
まず、両辺から7を引きます。
2a=b72a = b - 7
次に、両辺を2で割ります。
a=b72a = \frac{b-7}{2}
(3) V=13πhr2V = \frac{1}{3} \pi h r^2hh について解く
まず、両辺に3をかけます。
3V=πhr23V = \pi h r^2
次に、両辺を πr2\pi r^2 で割ります。
h=3Vπr2h = \frac{3V}{\pi r^2}

3. 最終的な答え

(1) a=b72a = \frac{b-7}{2}
(3) h=3Vπr2h = \frac{3V}{\pi r^2}

「代数学」の関連問題

問題は $36x^2 - 16y^2$ を因数分解することです。

因数分解二次式多項式
2025/7/28

画像に写っている以下の10個の因数分解の問題を解きます。 (1) $x^2 - 3x - 4$ (2) $x^2 - \frac{5}{3}x - \frac{2}{3}$ (3) $36x^2 - ...

因数分解多項式二次方程式三次方程式
2025/7/28

問題は、次の2つの一次関数のグラフを、それぞれ与えられた座標平面上に描くことです。 (1) $y = x + 2$ (2) $y = -3x - 2$

一次関数グラフ座標平面傾き切片
2025/7/28

2次関数 $y = ax^2 + bx + c$ のグラフが与えられたとき、$a, b, c, b^2 - 4ac, a+b+c, a-b+c$ の正、0、負を判定する。

二次関数グラフ判別式不等式
2025/7/28

与えられた連立一次方程式を解き、$a, b, c$ の値を求める。 連立方程式は以下の通り。 $a + b + 2c = 9$ $a + 2b + c = 11$ $2a + b + c = 8$

連立一次方程式方程式線形代数
2025/7/28

与えられた2次式 $x^2 - \frac{5}{3}x - \frac{2}{3}$ を因数分解してください。

因数分解二次式分数
2025/7/28

放物線 $y = x^2 + 2(2a+1)x + a+1$ が、$x$軸と異なる2点で交わるときの定数 $a$ の値の範囲を求める。

二次関数判別式不等式二次方程式
2025/7/28

与えられた2つの $n$ 次正方行列 $N$ と $U$ の $k$ 乗 $N^k$ と $U^k$ ($k \in \mathbb{N}$) を計算する問題です。 ここで、$N$ と $U$ は以下...

行列行列のべき乗対角行列上三角行列二項係数
2025/7/28

与えられた4つの2次関数を平方完成し、$y = a(x-p)^2 + q$ の形に変形します。 (1) $y = 2x^2 - 16x$ (2) $y = 2x^2 - 4x + 5$ (3) $y ...

二次関数平方完成数式変形
2025/7/28

与えられた行列 $A = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{pmatrix}$ の逆行列を、消去法(掃き出し法)を用い...

線形代数行列逆行列掃き出し法
2025/7/28