円の外部の点Pから円に引いた接線の接点をTとし、点Pを通る直線と円との交点をA, Bとする。PA = AB = 6 であるとき、PT の長さを求めよ。

幾何学接線方べきの定理相似
2025/7/28
はい、承知いたしました。画像に写っている数学の問題のうち、一番下の問題(円の外部の点Pから円に引いた接線の問題)を解きます。

1. 問題の内容

円の外部の点Pから円に引いた接線の接点をTとし、点Pを通る直線と円との交点をA, Bとする。PA = AB = 6 であるとき、PT の長さを求めよ。

2. 解き方の手順

この問題は、方べきの定理を利用して解きます。
方べきの定理とは、円の外部の点Pから円に引いた接線の長さをPT, 円と直線PA,Bとの交点をA,Bとするとき、以下の関係が成り立つというものです。
PT2=PAPBPT^2 = PA \cdot PB
問題文より、PA=6PA = 6 であり、AB=6AB = 6であるから、PB=PA+AB=6+6=12PB = PA + AB = 6 + 6 = 12 です。
したがって、方べきの定理に代入すると、
PT2=612=72PT^2 = 6 \cdot 12 = 72
PT=72=362=62PT = \sqrt{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}

3. 最終的な答え

PT=62PT = 6\sqrt{2}

「幾何学」の関連問題

ベクトル $\vec{a} = (2, 1, 3)$ とベクトル $\vec{b} = (-1, 3, 2)$ の両方に直交する単位ベクトルを求める。

ベクトル外積単位ベクトル空間ベクトル
2025/7/29

(1) 点A(0, 0)からの距離と点B(3, 0)からの距離の比が1:2である点Pの軌跡を求めよ。 (2) 点A(-2, 0)からの距離と点B(1, 0)からの距離の比が2:1である点Pの軌跡を求め...

軌跡距離
2025/7/29

三角形ABCにおいて、$BC = 2$, $AC = 4$, 面積が$\frac{3\sqrt{7}}{2}$である。 (1) $\sin \angle ACB$を求める。 (2) 辺ABの長さを求め...

三角形正弦定理余弦定理面積角度外接円
2025/7/29

三角形ABCにおいて、辺AB, BC, CAの中点をそれぞれD, E, Fとする。三角形ABCと三角形ADFの重心をそれぞれG, Pとする。AB = 9, AC = 10, AE = 9のとき、DE,...

三角形中点連結定理重心辺の長さ
2025/7/29

点A,Bが与えられたとき、AP=BPを満たす点Pの軌跡を求める問題です。 (1) A(2, 0), B(-2, 0)の場合 (2) A(1, -4), B(-2, 5)の場合

軌跡座標平面距離線分の中点
2025/7/29

角の二等分線の性質より、$BD/DC = AB/AC = 3/2$。

三角形角の二等分線チェバの定理メネラウスの定理
2025/7/29

2点A(0, 1), B(5, 0)に対し、$AP = BP$を満たす点Pの軌跡を求める。

軌跡座標平面距離直線
2025/7/29

3つの図において、点Oは三角形ABCの外心である。それぞれの図で角度αを求めよ。

三角形外心角度二等辺三角形
2025/7/29

線分ABについて、以下の点を直線上に図示する問題です。 (1) 線分ABを2:1に内分する点P (2) 線分ABを1:2に外分する点Q (3) 線分ABを5:2に外分する点R ただし、点Aは0、点Bは...

線分内分点外分点座標
2025/7/29

半径2cm、中心角120°のおうぎ形PQRが、直線l上を問題文に示された3つの操作に従って移動するとき、点Pが描く線の長さを求める問題です。ただし、円周率は$\pi$を用いないこと。

おうぎ形軌跡回転弧の長さ
2025/7/29