$\int 2x \log(x^2+1) dx$ を計算します。解析学積分部分積分対数関数不定積分2025/7/281. 問題の内容∫2xlog(x2+1)dx\int 2x \log(x^2+1) dx∫2xlog(x2+1)dx を計算します。2. 解き方の手順部分積分を用いて解きます。部分積分の公式は次の通りです。∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vduu=log(x2+1)u = \log(x^2 + 1)u=log(x2+1) と dv=2xdxdv = 2x dxdv=2xdx とします。すると、du=2xx2+1dxdu = \frac{2x}{x^2 + 1} dxdu=x2+12xdxv=∫2xdx=x2v = \int 2x dx = x^2v=∫2xdx=x2部分積分の公式に当てはめると、∫2xlog(x2+1)dx=x2log(x2+1)−∫x22xx2+1dx\int 2x \log(x^2+1) dx = x^2 \log(x^2+1) - \int x^2 \frac{2x}{x^2+1} dx∫2xlog(x2+1)dx=x2log(x2+1)−∫x2x2+12xdx=x2log(x2+1)−∫2x3x2+1dx= x^2 \log(x^2+1) - \int \frac{2x^3}{x^2+1} dx=x2log(x2+1)−∫x2+12x3dxここで、∫2x3x2+1dx\int \frac{2x^3}{x^2+1} dx∫x2+12x3dx を計算します。2x3x2+1=2x3+2x−2xx2+1=2x(x2+1)−2xx2+1=2x−2xx2+1\frac{2x^3}{x^2+1} = \frac{2x^3 + 2x - 2x}{x^2+1} = \frac{2x(x^2+1) - 2x}{x^2+1} = 2x - \frac{2x}{x^2+1}x2+12x3=x2+12x3+2x−2x=x2+12x(x2+1)−2x=2x−x2+12xしたがって、∫2x3x2+1dx=∫(2x−2xx2+1)dx=∫2xdx−∫2xx2+1dx=x2−log(x2+1)\int \frac{2x^3}{x^2+1} dx = \int (2x - \frac{2x}{x^2+1}) dx = \int 2x dx - \int \frac{2x}{x^2+1} dx = x^2 - \log(x^2+1)∫x2+12x3dx=∫(2x−x2+12x)dx=∫2xdx−∫x2+12xdx=x2−log(x2+1)元の式に戻ると、∫2xlog(x2+1)dx=x2log(x2+1)−(x2−log(x2+1))+C\int 2x \log(x^2+1) dx = x^2 \log(x^2+1) - (x^2 - \log(x^2+1)) + C∫2xlog(x2+1)dx=x2log(x2+1)−(x2−log(x2+1))+C=x2log(x2+1)−x2+log(x2+1)+C= x^2 \log(x^2+1) - x^2 + \log(x^2+1) + C=x2log(x2+1)−x2+log(x2+1)+C=(x2+1)log(x2+1)−x2+C= (x^2+1) \log(x^2+1) - x^2 + C=(x2+1)log(x2+1)−x2+C3. 最終的な答え(x2+1)log(x2+1)−x2+C(x^2+1) \log(x^2+1) - x^2 + C(x2+1)log(x2+1)−x2+C